Research on Modeling and Optimization of a Dual Chamber Air Spring Vibration Isolation System

2013 ◽  
Vol 702 ◽  
pp. 310-317 ◽  
Author(s):  
Cheng Zhang ◽  
Jian Fu Zhang ◽  
Ping Fa Feng ◽  
Ding Wen Yu ◽  
Zhi Jun Wu

To improve the vibration isolation performanceof an air spring system,the characteristics of the dynamic stiffness and damping of adual chamber air springwere first analyzed. A theoretical model ofa four dual chamber air springs system wasthen constructed,and through experimental verification,the theoretical and experimental curves showedthe same change trend.Based on the theoretical models, anobjective function used to optimize the structural parameters of an air springwas constructed. It was demonstrated that the vibration isolation performance of the air spring system was improved with the optimized parameters.

Author(s):  
Youshuo Song ◽  
Xiuting Sun

This study analyzes the modeling and dynamics of a novel passive in Multi-Degree-of-Freedom (MDOF) vibration isolation platform which can achieve significant isolation effect. Symmetrical Scissor-Like structures (SLSs) are utilized in the proposed MDOF isolation platform as the supporting and isolation elastic components. Based on the mathematical modeling and theoretical analysis of the MDOF vibration isolation system with SLSs, the effect of structural parameter and joint friction on stiffness and damping properties is investigated. It is shown that due to geometric relations within the SLSs, the natural frequencies can be reduced via adjusting structural parameters of the SLS for different direction vibration isolation. Theoretical and experimental results show that the SLS isolation platform can achieve much better loading capacity and vibration isolation performance simultaneously by only using linear passive components because of the MDOF adjustable stiffness property. Therefore, with low costing and energy consumption, the proposed novel isolation platform can provide the improvement of vibration suppression in various engineering practices.


2019 ◽  
Vol 52 (3-4) ◽  
pp. 291-302 ◽  
Author(s):  
Di Qu ◽  
Xiandong Liu ◽  
Guangtong Liu ◽  
Yifan Bai ◽  
Tian He

Precision equipment is usually accompanied with vibrations during road or railway transportation. Sometimes the vibration exceeds the given limit, leading to the damage of the equipment. It is necessary to control the vibration during the transportation. However, it is still difficult to adjust the parameters of a designed vibration isolation system for the transportation of different precision equipment under various road conditions. Aiming at satisfying the vibration isolation requirements of different precision equipment, this paper proposes a parallel air spring vibration isolation system based on the principle of limiting lateral deflection. According to the measured parameters, a rigid-body dynamics simulation model of parallel air spring vibration isolation system is established. Then its feasibility is verified, and the optimal parameters of the vibration isolation system are obtained by a simulation. Finally, the vibration isolation system is built and installed in the equipment to carry out the real vehicle transportation test. The test results show that the transportation vibration isolation system based on the parallel air spring structure has not only excellent vibration isolation efficiency but also acceptable lateral stability. The research results in this paper can provide a reference for the design of the vibration isolation system for the large precision equipment transportation.


2021 ◽  
pp. 107754632110005
Author(s):  
Yonglei Zhang ◽  
Guo Wei ◽  
Hao Wen ◽  
Dongping Jin ◽  
Haiyan Hu

The vibration isolation system using a pair of oblique springs or a spring-rod mechanism as a negative stiffness mechanism exhibits a high-static low-dynamic stiffness characteristic and a nonlinear jump phenomenon when the system damping is light and the excitation amplitude is large. It is possible to remove the jump via adjusting the end trajectories of the above springs or rods. To realize this idea, the article presents a vibration isolation system with a cam–roller–spring–rod mechanism and gives the detailed numerical and experimental studies on the effects of the above mechanism on the vibration isolation performance. The comparative studies demonstrate that the vibration isolation system proposed works well and outperforms some other vibration isolation systems.


Author(s):  
Chang-Geng Shuai ◽  
Lin He ◽  
Zhi-Qiang Lv

The characteristics of control parameters of air spring with rubber bellow are analyzed through finite element method and thermodynamic equation respectively. The analysis results indicate that the vertical stiffness of air spring is sensitive to the varying of vertical displacement and volume, and nonlinearly varies with vertical displacement. When the air spring is pressed down or pulled up under the exterior excitation, the height of air spring can be controlled to keep stable through adjusting the volume of air spring by the use of hydraulic transformer.


2012 ◽  
Vol 248 ◽  
pp. 475-480
Author(s):  
Guan Jun Zhang ◽  
Xiang Zhu ◽  
Ran Xu ◽  
Tian Yun Li

Recently, the Euler strut is used as the supporting spring in the low frequency isolation. An Euler spring is a column or strut of steel material which is compressed elastically beyond its buckling load, which makes the ratio of the isolated mass to the mass of the supporting spring maximum, and greatly increasing the internal resonant frequencies of the isolator. In this research, the unique mechanical properties and the expressions of the displacement transmissibility of the Euler strut are deduced. The influences of structural parameters of the strut on the stiffness and vibration isolation characteristics are investigated in detail. The results show that the Euler strut has the potential in low frequency vibration isolation, and the length and breadth of the strut can influence the stiffness, transmissibility and critical loading mass respectively.


2012 ◽  
Vol 226-228 ◽  
pp. 195-198
Author(s):  
Rong Wei Wen ◽  
Jiu Bin Tan ◽  
Lei Wang ◽  
Guan Hua Wang

A mathematical model of a single degree of freedom air spring vibration isolation system is established. The model analyzes the influence of structural damping in the air spring vibration isolation system based on the traditional model. This paper establishes the relationship between the working pressure p, the volume ratio of n and system vibration transmissibility T under forced vibration. The experimental results are verified on different working pressure. The results showed that working pressure p has little effect on the resonant frequency of the system and the system vibration transmissibility. The smaller the ratio n, the lower the resonant frequency of the system and the system vibration transmissibility. The environmental excitation frequency range must be taken into account in designing.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1635-1640
Author(s):  
JUAN WANG ◽  
SHAOHUA ZHANG

In this paper, the problem of Electrorheological(ER) technology's application in the vibration isolation system is empirically studied. Based on the particular characteristics of the Electrorheological Fluids (ERF) tunable damping, a metal-spring ER isolator was designed and its working principle is mainly discussed. By theoretical analysis of its simplified physical model, the dynamic response of an ER isolator is frequency- and amplitude- dependent and sensitive to structural parameters. The controllable parameters here can be the system equivalent spring stiffness K and damping coefficient C of ERF. With experiment, the exertion of ER effect was controlled through the change of K and C. Consequently, the system dynamic stiffness, which is used to describe the dynamic properties of system isolation performance, can be changed obviously. According to the dynamic performance tests, the result confirmed that applying different electric field strength could change the dynamic peculiarity of the metal-spring ER isolator. The configuration design of the ER equipment, such as stiffness ratio of two fluid chambers and the size of the electric field, which are important factors for the tunable range of ER isolator.


2010 ◽  
Vol 44-47 ◽  
pp. 4176-4180
Author(s):  
Yi Zhang ◽  
Min Min Xia ◽  
Jin Yi Qin ◽  
Zi Fan Fang

In order to improve the isolation effect of ultra-precision vibration isolation platform, an approach of advancing structural parameters optimization for the system based on fuzzy control is presented. This paper created a platform parametric model In ADAMS / view; completed the structural optimization under circumstances of taking the acceleration of vibration isolation platform, the system dynamic deflection and the dynamic displacement of the base as performance objective function; and applied the method of co-simulation using ADAMS and MATLAB under fuzzy control. The simulation results show that the active vibration isolation system optimized by ADAMS could effectively enhance the effect of active vibration isolation platform; the method of co-simulation provided a new way for dynamics studies of vibration isolation system.


2013 ◽  
Vol 419 ◽  
pp. 630-635
Author(s):  
Wen Jun Bu ◽  
Ying Long Zhao ◽  
Liang Shi

Alignment control of propulsion plant air spring vibration isolation system is a complicated Multi objects control problem. In this paper a new hierarchical intelligent control method of alignment control is brought out. Known from current hierarchical intelligent control methods with three layers, this method consists of task layout layer, control decision-making layer, control layout layer and control executive layer. The complicated alignment control task is decomposed into four hierarchical layers to reduce complexity. The control system has good control convergence capability and fast convergence speed. Test results validate the feasibility of this method.


Sign in / Sign up

Export Citation Format

Share Document