Comparison of Antimony Determination Methods in Drinking Water

2013 ◽  
Vol 706-708 ◽  
pp. 478-482
Author(s):  
Nan Chen ◽  
Yong Sheng Shi ◽  
Meng Zhao ◽  
Meng Ru Xuan

Antimony distributes widely in the environment. And antimony pollution in the water environment is becoming serious. How to detect the content of the antimony correctly and effectively is very important. Graphite furnace atomic absorption method is simple, but low sensitivity; hydride generation atomic fluorescence spectrometry, low cost, good reproducibility, but is harmful to the introduction of substances; inductively coupled plasma mass spectrometry for simultaneous multi-element analysis, high sensitivity, but the operation is cumbersome; inductively coupled plasma spectrometry has low detection limit, high accuracy, but the equipment is expensive, and cost of analysis is high.

2021 ◽  
Vol 02 ◽  
Author(s):  
Rama Alhasan ◽  
Caroline Perrin-Sarrado ◽  
Claus Jacob ◽  
Caroline Gaucher

Objective: Over the years, scientific investigations have proven the importance of selenium as an essential element for mammals, emphasizing its activity against many diseases and even its prophylactic effects. It is also established now that a malconsumption of selenium can be harmful. Therefore, the nature and the concentration of selenium and its derivatives found in the diet, the body, and even in the environment, for example, in the soil, should be determined carefully. Methods: In this review, analytical methods for speciation and determination of selenium concentrations in biological samples are summarized. Results: Methods ranging from routine to cutting-edge are explored, focusing on their analytical characteristics, such as specificity for discrete selenium species, sensitivity, accuracy, reproducibility, and skills required. Conclusion: There are already numerous studies regarding the analysis of selenium species. Beyond the method employed for actual measurements, we propose to review the preanalytic steps for sample handling in biological matrices, which directly affect results that will be more accurate with careful pretreatment. Furthermore, to reach better outcomes in terms of the identification of selenium species, different combinations of techniques might be the answer. We highlight here the last and the cutting-edge methods to identify and quantify selenium such as, high-performance liquid chromatography combined to inductively coupled plasma mass spectrometry (HPLC-ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride-generation combined to atomic fluorescence spectrometry (HG-AFS), or to inductively coupled plasma optical emission spectrometry (HG-ICP-OES). This review emphasizes the importance of such investigations and the need to achieve reliable, safe, and effective quantification and methods of determination.


2020 ◽  
Vol 10 (9) ◽  
pp. 3218
Author(s):  
Andrea Ceci ◽  
Veronica Spinelli ◽  
Lorenzo Massimi ◽  
Silvia Canepari ◽  
Anna Maria Persiani

Increasing arsenic environmental concentrations are raising worldwide concern for its impacts on human health and ecosystem functionality. In order to cope with arsenic contamination, bioremediation using fungi can represent an efficient, sustainable, and cost-effective technological solution. Fungi can mitigate arsenic contamination through different mechanisms including bioaccumulation. In this work, four soil saprotrophic fungi Absidia spinosa, Purpureocillium lilacinum, Metarhizium marquandii, and Cephalotrichum nanum, isolated from soils with naturally high arsenic concentrations, were tested for their ability to tolerate different sodium arsenite concentrations and accumulate As in different cultural conditions. pH medium after fungal growth was measured to study pH variation and metabolic responses. Arsenic bioaccumulation and its influence on the uptake of other elements were investigated through multi-elemental analysis using hydride generation atomic fluorescence spectrometry (HG-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Considering the increasing interest in siderophore application for metal bioremediation, the production of siderophores and their affinity for both Fe and As were also evaluated. All species were able to tolerate and accumulate As in their biomass in all of the tested conditions and produced siderophores with different affinities for Fe and As. The results suggest that the tested fungi are attractive potential candidates for the bioremediation of As contaminated soil and worthy of further investigation.


Sign in / Sign up

Export Citation Format

Share Document