Effect of Annealing Temperature on Resistance Switching Behavior of Bi4Ti3O12 Thin Films Deposited on ITO Glass

2013 ◽  
Vol 706-708 ◽  
pp. 82-84
Author(s):  
Bing Cheng Sun ◽  
Hua Wang ◽  
Ji Wen Xu

Nonvolatile of polycrystalline Bi4Ti3O12 thin films prepared by solgel method were studied, and the effect of annealing temperature on resistance switching behavior has been studied. The main point is accented on decrease the operation voltage. Two controllable resistance states were observed by applying voltage pulses. It was also found that the conduction mechanisms dominating the low and high resistance states are Ohmic behavior and Space Charge Limited Current(SCLC).

2012 ◽  
Vol 76 ◽  
pp. 40-43 ◽  
Author(s):  
Shu-ming Gao ◽  
Hua Wang ◽  
Ji-wen Xu ◽  
Chang-lai Yuan ◽  
Xiao-wen Zhang

2019 ◽  
Vol 13 (28) ◽  
pp. 44-51
Author(s):  
Ameer F. Abdulameer

This study describe the effect of temperature on the opticalproperties of nickel(ii) phthalocyanine tetrasulfonic acid tetrasodiumsalt (NiPcTs) organic thin films which are prepared by spin coatingon indium tin oxide (ITO-glass). The optical absorption spectra ofthese thin films are measured. Present studies reveal that the opticalband gap energies of NiPcTs thin films are dependent on theannealing temperatures. The optical band gap decreases with increasein annealing temperature, then increased when the temperature risingto 473K. To enhance the results of Uv-Vis measurements and getmore accurate values of optical energy gaps; the Photoluminescencespectra of as-deposited and annealed NiPcTs thin films was studied.FTIR measurements for NiPcTs thin films also carried out in thiswork and gave good information about the NiPcTs bonds and itslocations as a compared with H2Pc as a reference.


2015 ◽  
Vol 1109 ◽  
pp. 461-465 ◽  
Author(s):  
Nurbaya Zainal ◽  
Mohd Hafiz Wahid ◽  
Mohammad Rusop

Performance of lead titanate, (PbTiO3) thin films have been successfully investigated on microstructural properties, I-V characteristic, dielectric properties, and ferroelectric properties. PbTiO3offers variety of application as transducer, ferroelectric random access memory, transistor, high performance capacitor, sensor, and many more due to its ferroelectric behavior. Preparation of the films are often discussed in order to improve the structural properties, like existence of grain boundaries, particle uniformity, presents of microcrack films, porosities, and many more. Yet, researchers still prepare PbTiO3thin films at high crystallization temperature, certainly above than 600 ̊C to obtain single crystal perovskite structure that would be the reason to gain high spontaneous polarization behavior. Although this will results to high dielectric constant value, the chances that leads to high leakage current is a major failure in device performance. Thus, preparation the thin films at low annealing temperature quite an essential study which is more preferable deposited on low-cost soda lime glass. The study focuses on low annealing temperature of PbTiO3thin films through sol-gel spin coating method and undergo for dielectric and I-V measurements.


2008 ◽  
Vol 47 (3) ◽  
pp. 1635-1638 ◽  
Author(s):  
Dong-Wook Kim ◽  
Ranju Jung ◽  
Bae Ho Park ◽  
Xiang-Shu Li ◽  
Chanwoo Park ◽  
...  

2008 ◽  
Vol 23 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Dashan Shang ◽  
Lidong Chen ◽  
Qun Wang ◽  
Zihua Wu ◽  
Wenqing Zhang ◽  
...  

The electric-pulse–induced resistance switching of the Ag–La0.7Ca03MnO3(LCMO)–Pt heterostructures was studied. The multilevel resistance switching (MLRS), in which several resistance states can be obtained, was observed in the switching from high to low resistance state (HRS → LRS) by applying electric pulse with various pulse voltages. The threshold pulse voltages of MLRS are related to the initial resistance values as well as the switching directions. On the other hand, the resistance switching behavior from low to high resistance states (LRS → HRS) shows unobvious MLRS. According to the resistance switching behavior in serial and parallel modes, MLRS was explained by the parallel effect of multifilament forming/rupture in the Ag–LCMO interface layer. The present results suggest a possible application of Ag–LCMO–Pt heterostructures as multilevel memory devices.


2015 ◽  
Vol 1729 ◽  
pp. 23-28 ◽  
Author(s):  
Yogesh Sharma ◽  
Pankaj Misra ◽  
Shojan P. Pavunny ◽  
Ram S. Katiyar

ABSTRACTRare-earth oxides have attracted considerable research interest in resistive random access memories (ReRAMs) due to their compatibility with complementary metal-oxide semiconductor (CMOS) process. To this end we report unipolar resistive switching in a novel ternary rare-earth oxide LaHoO3 (LHO) to accelerate progress and to support advances in this emerging densely scalable research architecture. Amorphous thin films of LHO were fabricated on Pt/TiO2/SiO2/Si substrate by pulsed laser deposition, followed by sputter deposition of platinum top electrode through shadow mask in order to elucidate the resistive switching behavior of the resulting Pt/LHO/Pt metal-insulator-metal (MIM) device structure. Stable unipolar resistive switching characteristics with interesting switching parameters like, high resistance ratio of about 105 between high resistance state (HRS) and low resistance state (LRS), non-overlapping switching voltages with narrow dispersion, and excellent retention and endurance features were observed in Pt/LHO/Pt device structure. The observed resistive switching in LHO was explained by the formation/rupture of conductive filaments formed out of oxygen vacancies and metallic Ho atom. From the current-voltage characteristics of Pt/LHO/Pt structure, the conduction mechanism in LRS and HRS was found to be dominated by Ohm’s law and Poole-Frenkel emission, respectively.


2013 ◽  
Vol 1562 ◽  
Author(s):  
P. Misra ◽  
S. P. Pavunny ◽  
R. S. Katiyar

ABSTRACTNonvolatile unipolar resistive switching properties of the amorphous LaGdO3 thin films deposited by pulsed laser deposition have been studied. Reliable and repeatable switching of the resistance of LaGdO3 film was obtained between low and high resistance states with nearly constant resistance ratio ∼ 106 and non-overlapping switching voltages in the range of ∼0.6-0.75 V and 2.5-4 V respectively. The switching between low and high resistance states was attributed to the formation and rupture of conductive filaments using temperature dependent resistance measurements. The current conduction mechanisms of the LaGdO3 film in low and high resistance states were found to follow the Ohmic behavior and Poole-Frenkel emission respectively. The resistance of low and high resistance states of the film remained nearly constant for up to ∼ 104 seconds indicating good retention. The observed resistive switching characteristics of LaGdO3 thin films are promising for futuristic nonvolatile memories.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Tingting Zhong ◽  
Yongfu Qin ◽  
Fengzhen Lv ◽  
Haijun Qin ◽  
Xuedong Tian

Abstract High-density Cs2AgBiBr6 films with uniform grains were prepared by a simple one-step and low-temperature sol–gel method on indium tin oxide (ITO) substrates. An explicit tristate bipolar resistance switching behavior was observed in the Pt/Cs2 AgBiBr6/ITO/glass devices under irradiation of 10 mW/cm2 (445 nm). This behavior was stable over 1200 s. The maximum ratio of the high and low resistance states was about 500. Based on the analysis of electric properties, valence variation and absorption spectra, the resistive switching characteristics were attributed to the trap-controlled space charge-limited current mechanism due to the bromine vacancies in the Cs2AgBiBr6 layer. On the other hand, it is suggested that the ordering of the Schottky-like barrier located at Pt/Cs2AgBiBr6 affects the three-state resistance switching behavior under light irradiation. The ability to adjust the photoelectrical properties of Cs2AgBiBr6-based resistive switching memory devices is a promising strategy to develop high-density memory. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document