Assessment on Pollution Level and Ecological Risk of Heavy Metals in Pond Sediment of Suburban District

2013 ◽  
Vol 712-715 ◽  
pp. 498-501
Author(s):  
Hai Min Su

The content of heavy metals Cr, Cu, Zn, As in 15 ponds sediment of suburban district were determined in Suzhou City. The results showed that the contents, except for Cr, all above geochemical background values of Anhui Province. Meanwhile, the index of geoaccumulation and the Lars Hakansons method were used to assess pollution level and potential ecological risk of the heavy metals. The assessment results revealed that Cu was light pollution, and the others were non-pollution. And heavy metal potential ecological indexes from 36.62 to 75.85 were less than 150, which illustrated the potential ecological risk small.

Author(s):  
Malwina Tytła

This study aimed to assess the pollution and potential ecological risk of seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in the sewage sludge collected from a wastewater treatment plant (WWTP), located in the most industrialized region of Poland (Silesian Voivodeship). The concentrations of heavy metals were determined using inductively coupled plasma optical spectrometry (ICP-OES) and cold vapor atomic absorption spectrometry (CVAAS). The chemical forms (chemical speciation) of heavy metals were determined using the three-step chemical sequential extraction procedure, developed by the Community Bureau of Reference (BCR). To assess the pollution level and potential ecological risk, the following indices were used: Geoaccumulation Index (Igeo), Potential Ecological Risk Factor (ER), Individual Contamination Factor (ICF), Risk Assessment Code (RAC), and Ecological Risk Factor (ERF)—the author’s index. Sludge samples were collected at successive stages of processing. The results revealed that the activated sludge process and sludge thickening have a significant impact on heavy metal distribution, while anaerobic digestion and dehydration decrease their mobility. The most dominant metals in the sludge samples were Zn and Cu. However, the content of heavy metals in sewage sludge did not exceed the permissible standards for agricultural purposes. The concentrations of heavy metals bound to the immobile fractions exhibited higher concentrations, compared to those bound to mobile fractions (except Zn). The values of the total indices indicated that sludge samples were moderately to highly contaminated with Zn, Hg, Cd, Cu, and Pb, of which only Hg, Cd, and Cu posed a potential ecological risk, while according to the speciation indices, sludge samples were moderately to very highly polluted with Zn, Cu, Cd, Cr, and Ni, of which Zn, Ni, and Cd were environmentally hazardous. The obtained results proved that assessment of the pollution level and potential ecological risk of heavy metals in sewage sludge requires knowledge on both their total concentrations and their chemical forms. Such an approach will help prevent secondary pollution of soils with heavy metals, which may influence the reduction of health risks associated with the consumption of plants characterized by a high metal content.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 180
Author(s):  
Arup Acharjee ◽  
Zia Ahmed ◽  
Pankaj Kumar ◽  
Rafiul Alam ◽  
M. Safiur Rahman ◽  
...  

River sediment can be used to measure the pollution level in natural water, as it serves as one of the vital environmental indicators. This study aims to assess heavy metal pollution namely Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Nickel (Ni), Lead (Pb), and Cadmium (Cd) in Surma River. Further, it compares potential ecological risk index values using Hakanson Risk Index (RI) and Monte Carlo Simulation (MCS) approach to evaluate the environmental risks caused by these heavy metals. in the study area. With obtained results, enrichment of individual heavy metals in the study area was found in the order of Ni > Pb > Cd > Mn > Cu > Zn. Also, variance in MCS index contributed by studied metals was in the order of Cd > Pb > Ni > Zn > Cu. None of the heavy metals, except Ni, showed moderate contamination of the sediment. Risk index values from RI and MCS provide valuable insights in the contamination profile of the river, indicating the studied river is currently under low ecological risk for the studied heavy metals. This study can be utilized to assess the susceptibility of the river sediment to heavy metal pollution near an urban core, and to have a better understanding of the contamination profile of a river.


Author(s):  
Xiuling Li ◽  
Henglun Shen ◽  
Yongjun Zhao ◽  
Weixing Cao ◽  
Changwei Hu ◽  
...  

The Yi River, the second longest river in Shandong Province, China, flows through Linyi City and is fed by three tributary rivers, Beng River, Liuqing River, and Su River in the northeastern part of the city. In this study, we determined the concentrations of five heavy metals (Cr, Ni, Cu, Zn, and Pb) in water, sediment, and aquatic macrophyte samples collected from the junction of the four rivers and evaluated the potential ecological risk of heavy metal pollution. Most of the heavy metals in water were in low concentrations with the water quality index (WQI) below 1, suggesting low metal pollution. The sediments showed low heavy metal concentrations, suggesting a low ecological risk based on the potential ecological risk index (RI) and the geo-accumulation index (Igeo). The aquatic plant species Potamogeton crispus accumulated considerable amounts of heavy metals, which were closely related to the metal concentrations of the sediment. The plant species Salvinia natans also showed an excellent metal accumulation capability. Based on our results, the junction of the four rivers is only slightly polluted in terms of heavy metals, and the plant species P. crispus is a suitable bioindicator for sediment heavy metal pollution.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1855 ◽  
Author(s):  
Zike Zhou ◽  
Yongping Wang ◽  
Haowei Teng ◽  
Hao Yang ◽  
Aiju Liu ◽  
...  

In this study, the concentrations of seven heavy metals (Cr, Ni, Cu, Zn, As, Hg, and Pb) and Pb isotope in a sediment core from the Shuanglong reservoir, Southwestern China, were investigated. Based on the constant rate of supply (CRS) model, the age span of a 60 cm sediment sample was determined to range from the years 1944 to 2015. Combined with chronology and heavy metal content, the evolution of the sources and pollution levels of heavy metals showed a changing trend composed of various stages. The sources of heavy metals transitioned from natural origins in 1944–1964 to industrial origins in 1965–2004. The subsequent reduction in heavy metal content was mainly due to the vigorous implementation of environmental protection policies from 2005 to 2012. In recent years (2013–2015), the heavy metal content has increased due to frequent human activity. Principal component analysis (PCA), correlation analysis, and the coefficient of variation (CV) analysis indicated that Cr, Ni, Cu, Zn, and As were derived from natural processes, Pb mainly came from automobile manufacturing, and Hg was mainly from industrial sources. The values of the geo-accumulation index (Ig), single pollution index (Pi), and single potential ecological risk index (Er) showed that the contamination of Hg and Pb was slight to moderate. Moreover, the values of the potential ecological risk index (RI), pollution load index (PLI), and Nemerow index (PN) indicated that the Shuanglong reservoir is under low ecological risk.


2014 ◽  
Vol 651-653 ◽  
pp. 1402-1409
Author(s):  
Gui Ping Xu ◽  
Xiao Fei Wang ◽  
Li Jun Chen

Concentrations of heavy metals in sugarcane soil of Guangxi were determined and the potential ecological risk index was used simultaneously to evaluate the extent of heavy metals enrichment contamination. Results showed that the pollution extent of heavy metals in sugarcane soil by potential ecological risk followed the order: Cd>Pb>Cu>Zn, Cu and Zn were slightly polluted, with small potential ecological harm, while Pb and Cd were above moderately polluted, with heavy potential ecological harm. Principal component analysis was applied to estimate the sources of heavy metals contamination, the results indicated that the first two components accounted for 61.016% and 26.920% of the total variance respectively, 4 kinds of heavy metal elements had similar sources, tailing dam lead-zinc concentrator upstream along the coast was the main sources of heavy metal contamination.


2020 ◽  
Vol 20 (2) ◽  
pp. 77-85
Author(s):  
S. A. Ndur ◽  
S. Y. Nyarko ◽  
I. Quaicoe ◽  
L. B. Osei

Sediment contamination by heavy metals resulting from anthropogenic activities is increasingly becoming a global concern due to the risk it poses to human well-being and ecological integrity at large. The purpose of this study was to assess the heavy metals loading in sediment along the Kawere stream. Ten sediment samples were collected, acid digested and analysed for copper (Cu), lead (Pb), cadmium (Cd), manganese (Mn), zinc (Zn), nickel (Ni), chromium (Cr), cobalt (Co) and iron (Fe) using a Varian AA240FS Atomic Absorption Spectrometer (AAS). The Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines for freshwater sediment quality was used as the benchmark against which the measured metal concentrations were compared. Nemerow’s pollution and potential ecological risk indices were used to evaluate the pollution status and ecological risk levels of the heavy metals in the stream. The results obtained indicated that, except Cu which exceeded the ANZECC trigger value of 65 mg/kg at three sampling sites (K01=171.29 mg/kg, K05=170.83 mg/kg and K07=113.31 mg/kg), all other measured heavy metals concentrations were below their corresponding ANZECC values. Heavy metal pollution assessment showed that three samples (K01, K05 and K07) were slightly polluted, suggesting the likelihood of posing a health threat to the aquatic organisms and humans. Calculated Ecological Risk Index (RI) ranged from 3.229 to 19.750 (RI < 150), representing a low ecological risk. As such, the metals, Cu, Ni, Cd, Pb, Cr, and Zn pose a low ecological risk to the aquatic ecosystem. Although the ecological risk is low based on the current results, constant monitoring of the stream quality is recommended due to the increasing human activities along the stream as well as the sediments ability to accumulate and remobilise heavy metals back into the water column and possibly transferring them through the food chain.   Keywords: Heavy Metals, Sediment, Ecological Risk Assessment, Pollution, Stream


Author(s):  
Sajjad Abbasi ◽  
Sara Sheikh Fakhradini ◽  
Neamatollah Jaafarzadeh ◽  
Pooria Ebrahimi ◽  
Shirin Yavar Ashayeri

AbstractThe heavy metal(loid)s concentrations in water and sediments were analyzed in the Hashilan wetland to assess the spatial distribution, pollution status, fate, partitioning, and ecological risk and also to identify the heavy metal(loid)s sources in sediments using PMF (Positive Matrix Factorization) and APCs-MLR (absolute principal component score-multiple linear regression) receptor models. According to the pollution indices, (Ni, Cu, Cr, Mo), and (Zn, Cr, and Cu) are considered the most important pollutants in sediments and water, respectively. Ni, Cr, and Cu are the main contributors to ecological risks in sediments of some stations. The potential ecological risk assessment proposed low ecological risk in water of the study area. Higher distribution coefficient (Kp) values of Ni, Cr, Mn, Cu, Co, Pb, As, and Zn indicated the majority of these heavy metals present in the sediments; whereas, the majority of Cd concentration occurs in water. PMF and APCs-MLR results indicated the natural sources were the main factors affecting the concentrations of Ni, Cr, Zn, Al, Co, Fe, Pb, As, Cd and somewhat Cu. Mixed natural and agricultural activities are the main sources of Mo, and somewhat Cu. According to the results, there is low pollution of TPH (total petroleum hydrocarbons) in the sediment samples. Also, phosphate (PO42−) and nitrate (NO3−) concentrations were below the recommended permissible limits at all sampling sites except the S8 station for NO3−.


2021 ◽  
Author(s):  
Huaijie He ◽  
Ling Liu ◽  
Wenming Yan

Abstract Heavy metal and arsenic (As) concentrations in the overlying water of Lake WLSH from 2013-2017 to evaluate the water quality of the lake. Heavy metal and As concentrations in Lake WLSH surface sediment from studies performed between 2009-2017 were analyzed of heavy metal geo-accumulation, potential ecological risk and toxicity data for Lake WLSH surface sediment was performed to allow heavy metal and As pollution of Lake WLSH surface sediment to be described clearly, objectively, and comprehensively. The following four main conclusions were drawn. (1) The water quality index of the overlying water showed a tendency of slight pollution in the lake from 2013 to 2017. (2) Pollution by the heavy metals (Cu, Zn, Pb, Cd, Cr) and As in Lake WLSH should be given increased attention. (3) The geoaccumulation indices showed that Cd is the most critical pollutant and that the probabilities of Lake WLSH sediment being slightly polluted and moderately polluted were found to be 72.8% and 11.3%, respectively. (4) Cd is the main contributor (75.2%) to potential ecological risks, and although As is at a low toxicity level, its toxicity-risk contribution is higher than that of other metals (approximately 31%). (5) Positive matrix factorization (PMF) model results indicated that industrial and agricultural resources are the main suppliers of heavy metals to Lake WLSH sediment, contributing 43.2% and 42.6% of the heavy metals and As. The summarized results and conclusions can help the local government further understand heavy metals and As pollution in Lake WLSH and develop corresponding pollution-control measures. This study can also serve as a reference for future research on the heavy metals and As pollution of sediment in Lake WLSH and other lakes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Li Yu ◽  
Shi Kaiyi ◽  
Yuan Jie ◽  
Kuang Qiyu

The Liupanshui Minghu Wetland is a typical artificial urban wetland in a plateau mining region. It is important to identify the sources and potential ecological risks of heavy metal contaminants in its surface sediments to monitor the wetland and the downstream water quality and prevent pollution. In this study, we measured the concentrations of six toxic heavy metals (Pb, Zn, Cr, Cu, Ni, and Cd) in the surface sediments collected from the Liupanshui Minghu Wetland. Further, the geological accumulation indices of heavy metals and their potential ecological risk indices, pollution levels, and associated ecological hazards were evaluated. The average levels of Pb, Zn, Cr, Cu, Ni, and Cd in the superficial sediments were 197, 222, 79.0, 59.1, 68.6, 4.67 mg/kg, respectively. With the exception of Cr, the concentrations of the remaining metals were greater than the background levels in the region. The Statistical analysis indicated a strong correlation between Pb, Zn, Cr, and Cu (p &lt; 0.01). The pollution in the wetland by these elements can be attributed to human activities such as transportation, industrial activity, and agricultural production. Ni and Cd pollution can be attributed to human activities, such as coal mining, and natural phenomena, such as the weathering of mountains and rocks. The geological accumulation indices of Zn, Ni, and Cu indicated low levels of accumulation and minimal contamination. Cd and Pb were moderately enriched, and the levels of Cd and Pb contamination ranged from moderate to high. The potential ecological risk to the Shiyuan region (S) was the highest among the three regions in the wetland park. It was followed by the Longtoutan (L) region, and the potential ecological risk was the lowest in the Erdaoba (E) region. Among the six heavy metals, Cd was the main contributor to pollution in the Minghu Wetland. This study also strives to provide theoretical basis and data support for the prevention and control of heavy metal pollution in artificial wetlands in Alpine mining areas.


Sign in / Sign up

Export Citation Format

Share Document