Experimental Investigation and Finite Element Analysis on Concrete-Filled Steel Tubular Gusset Plate Connections

2013 ◽  
Vol 721 ◽  
pp. 701-705
Author(s):  
Wen Feng Duan ◽  
Chang Liu ◽  
Bao Zhu Cao

The use of concrete-filled steel tubes in different areas of construction is becoming an attractive solution because of its remarkable performance. It provides not only an increase in the load carrying capacity but also good seismic behaviour. It is often adopted as compression member especially for structure under large axial pressure. Concrete-filled steel tubular composite truss can be used as main load-bearing structure of long-span and mega structure. But the composite trusses were connected by mutually intersecting joints which the welding construction process is complicated and the quality is unstable. Therefore, gusset plate joints are more suitable. So experimental study and finite element analysis are carried out in 12 specimens. Test results indicate that bearing capacity of hollow circular steel tube joints filled with concrete is provided obviously, and local buckling performance of steel tube under gusset plate is also improved. In order to study the mechanical performance and interaction of steel tube and core concrete, the ANSYS program is adopted in finite element analysis. And the analysis results is agreed well with the test. Regression analysis is carried out at the same time, thus simplified calculated formula of this type joints is concluded which can give reference for the designers.

2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2012 ◽  
Vol 588-589 ◽  
pp. 212-216
Author(s):  
Rui Jing ◽  
Yong Sheng Zhang

With the help of large general finite element analysis software ANSYS, under different parameters, this paper will have a finite element analysis of bearing capacity on circular steel tube compile short column filled with steel reinforced concrete(STCSRC).In the paper,it uses separate models to calculate and analyze.Considering the nonlinear constitutive relation of steel and concrete and determining the type of unit,it is shown that stress distribution and load-displacement curve of specimen under the effect of different parameters.According to the curve and data,analysis results of bearing capacity of specimen have been shown that bearing capacity of STCSRC will increase with concrete strength increasing and it also will increase with steel rate increasing under axial load.Because of core concrete working together with steel tube and angle steel,it can significantly improve the bearing capacity of composite columns, slow down and inhibit shearing inclined cracks occur in the core concrete and develop,and improve the ductility of columns.


2010 ◽  
Vol 163-167 ◽  
pp. 2162-2166
Author(s):  
Guo Chang Li ◽  
Qi Feng Jiang ◽  
Ji Bai ◽  
Jie Jiang

The dynamic behavior of gangue concrete filled circular steel tube beam with different steel ratio under the cyclic loads are analyzed and studied based on finite element analysis software ABAQUS. Through reasonable modeling established, parameter set, an effective grid meshed, the hysteresis curve of gangue concrete filled circular steel tube beam under low-cycle reversed loading is given, and verified compared with the experimental results. The comparison shows that the simulated hysteretic curve gives results in close agreement with the experimental results. The simulated curve shows that there has the characteristic of spindle-shaped and no significant decline in stiffness of the hysteresis curve. And the fatness of hysteresis loop is better.


2020 ◽  
Vol 165 ◽  
pp. 06018
Author(s):  
Tan Wang ◽  
Kun Luo ◽  
Kuo Yuan ◽  
Shuai feng Yuan

With the rapid development of the construction industry, the country has a higher demand for scaffolding engineering, so it is very necessary to develop and promote the application of wheel buckle scaffolding. Steel tube scaffold with wheel buckle has the characteristics of clear transmission and good mechanical performance. In order to study the structural performance of steel tubular scaffolding with wheel buckle, the single span three-step element frame was tested. The failure mode and ultimate bearing capacity of the frame are obtained. The finite element software Sap2000 was used to conduct 3d modeling and linear buckling analysis of scaffolds in the test. The results of experiments and finite element analysis show that the failure type of steel tubular scaffolding is the overall torsional instability failure. The connection stiffness at the joint of the diagonal brace fastener has a great influence on the wheel-buckle scaffold. The diagonal brace has obvious influence on the bearing capacity of steel tubular scaffolding body with buckles.


2018 ◽  
Vol 763 ◽  
pp. 533-540
Author(s):  
Yuji Koetaka ◽  
Koichi Taniguchi ◽  
Iathong Chan

In steel building structures, local buckling and/or fracture of columns could occur during strong ground motions, furthermore complete collapse might be induced due to the column strength degradation. In this paper, cold press-formed square tube columns are targeted, and numerical model being able to trace precisely degradation behavior is proposed. In order to take account of both local buckling and fracture with low computational costs, multi-spring model which consists of some uni-axial springs is adopted. Axial force-deformation relationships of uni-axial springs are provided on flat area and corner area of square tube severally, and are separated into skeleton part and hysteresis part. All parameters on force-deformation relationship are identified based on finite element analysis results of short columns under monotonic or cyclic axial loading. Comparing between analysis results by multi-spring models and past cyclic loading test results or finite element analysis results, it is clarified that degradation behavior of cold press-formed square steel tube columns can be traced with high accuracy.


2011 ◽  
Vol 255-260 ◽  
pp. 369-373
Author(s):  
Jun Ling Chen ◽  
Xin Huang ◽  
Ren Le Ma

One large-diameter and non-circular steel tube was adopted in Henan TV tower (China). This special cross-section consists of three flat plates welded to three arc plates one by one. This paper studies the critical local buckling behavior of steel plates by using the finite element analysis method. Initial geometric imperfections and residual stresses presented in steel plates, material yielding and strain hardening were taken into account in the nonlinear analysis. An experimental study was performed to verify the capacity ability of this special steel tube. Based on the results obtained from the nonlinear finite element analyses and experiments, a set of design recommendations are provided for ensuring the safety of this special tube in Henan TV tower.


2013 ◽  
Vol 815 ◽  
pp. 256-261 ◽  
Author(s):  
Zhan Hui Li ◽  
Zhi Gang Yan ◽  
Jun Yang ◽  
Hua Luo

Further research on constitutive model of RPC (Reactive Powder Concrete) restrained by steel tube under axial compression is analyzed based on the research on concrete-filled steel tube and RPC-filled steel tube at home and abroad. Finite element analysis on RPC-filled steel tube stub columns under axial compression is conducted with ABAQUS to analyze the confinement index, core concrete strength and contact property on ultimate bearing capacity of RPC restrained by steel tube. As the confinement index and the core concrete strength increasing, the bearing capacity of RPC restrained by steel tube increases. The model with frictionless contact form has greater bearing capacity, but the ductility decreases.


Sign in / Sign up

Export Citation Format

Share Document