Finite Element Analysis of Axially Loaded RPC Filled Circular Steel Tube Columns

2013 ◽  
Vol 815 ◽  
pp. 256-261 ◽  
Author(s):  
Zhan Hui Li ◽  
Zhi Gang Yan ◽  
Jun Yang ◽  
Hua Luo

Further research on constitutive model of RPC (Reactive Powder Concrete) restrained by steel tube under axial compression is analyzed based on the research on concrete-filled steel tube and RPC-filled steel tube at home and abroad. Finite element analysis on RPC-filled steel tube stub columns under axial compression is conducted with ABAQUS to analyze the confinement index, core concrete strength and contact property on ultimate bearing capacity of RPC restrained by steel tube. As the confinement index and the core concrete strength increasing, the bearing capacity of RPC restrained by steel tube increases. The model with frictionless contact form has greater bearing capacity, but the ductility decreases.

2012 ◽  
Vol 588-589 ◽  
pp. 212-216
Author(s):  
Rui Jing ◽  
Yong Sheng Zhang

With the help of large general finite element analysis software ANSYS, under different parameters, this paper will have a finite element analysis of bearing capacity on circular steel tube compile short column filled with steel reinforced concrete(STCSRC).In the paper,it uses separate models to calculate and analyze.Considering the nonlinear constitutive relation of steel and concrete and determining the type of unit,it is shown that stress distribution and load-displacement curve of specimen under the effect of different parameters.According to the curve and data,analysis results of bearing capacity of specimen have been shown that bearing capacity of STCSRC will increase with concrete strength increasing and it also will increase with steel rate increasing under axial load.Because of core concrete working together with steel tube and angle steel,it can significantly improve the bearing capacity of composite columns, slow down and inhibit shearing inclined cracks occur in the core concrete and develop,and improve the ductility of columns.


2012 ◽  
Vol 166-169 ◽  
pp. 318-321
Author(s):  
Ya Feng Xu ◽  
Xu Yang ◽  
Xin Wang ◽  
Shou Yan Bai

The article analysis the seismic behaviors of circular steel tube composite column filled with steel reinforced concrete by the large finite element analysis software ABAQUS, adopted the load-displacement method and aimed at studying the mechanical properties of circular steel tube composite columns filled with steel reinforced concrete under horizontal low-cyclic loading, considering the degree of ductility, capacity of energy dissipation by the steel ratio and axial compression ratio. Under different axial compression ratios and steel ratios, the hysteresis curves and skeleton curves are carried out. Along with the increase of steel ratio, the deformation ability and ultimate bearing capacity are raised, but with the increase of axial compression ratio, the deformation ability becomes worse.


2014 ◽  
Vol 525 ◽  
pp. 568-572
Author(s):  
Yang Feng Wu ◽  
Hong Mei Zhang

A new composite strengthening method that the CFST short column was strengthened with concrete filled steel tube was presented. Through the finite element analysis of five specimens with strengthening circular concrete filled steel tube columns and a specimen without strengthening circular concrete filled steel tube to explore the impact of the outer layer of concrete strength grade, external pipe wall thickness for the ultimate bearing capacity of concrete filled steel tube columns. The results show that with the increase of the outer pipe wall thickness, double concrete filled steel tube column yield strength and ultimate strength have increased. As the outer concrete strength grade increased as the specimen bearing capacity increased. When the concrete strength grade greater than C40, the improvement of concrete strength for specimen ultimate bearing capacity is not great.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4831
Author(s):  
Hao Sun ◽  
Qingyuan Xu ◽  
Pengfei Yan ◽  
Jianguang Yin ◽  
Ping Lou

In order to study the axial compression performance of the T-shaped multi-cavity concrete-filled steel tube shear wall, first, three specimens were designed to perform the axial compression test. Then three-dimensional finite element analysis by the ABAQUS software was used to obtain the axial bearing capacity of the shear wall with different parameters. According to the results of the finite element model, the computational diagram in the limit state was obtained. The diagram was simplified into the core concrete in the non-enhanced area that was not constrained by the steel tube and the core concrete in the enhanced area that was uniformly constrained by the steel tube. Finally, a new practical equation for calculating the axial bearing capacity of a multi-cavity concrete-filled steel tubular shear wall was deduced and proposed based on the theory of ultimate equilibrium. The calculation results of the proposed equation were in good agreement with the finite element results, and the proposed equation can be used in practical engineering design.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012059
Author(s):  
Z J Yang ◽  
X Li ◽  
G C Li ◽  
S C Peng

Abstract Hollow concrete-filled steel tubular (CFST) member is mainly adopted in power transmission and transformation structures, but when it is used in the superstructure with complex stress, the hollow CFST member has a low bearing capacity and is prone to brittle failure. To improve the mechanical performance of hollow CFST members, a new type of reinforced hollow high strength concrete-filled square steel tube (RHCFSST) was proposed, and its axial compression performance was researched. 18 finite element analysis (FEA) models of axially loaded RHCFSST stub columns were established through FEA software ABAQUS. The whole stress process of composite columns was studied, and parametric studies were carried out to analyze the mechanical performance of the member. Parameters of the steel strength, steel ratio, deformed bar and sandwich concrete strength were varied. Based on the simulation results, the stress process of members can be divided into four stages: elastic stage, elastoplastic stage, descending stage and gentle stage. With the increase of steel strength, steel ratio, the strength of sandwich concrete and the addition of deformed bars, the ultimate bearing capacity of members also increases. Additionally, the increment of those parameters will improve the ductility of the member, except for the sandwich concrete strength.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2014 ◽  
Vol 578-579 ◽  
pp. 269-273
Author(s):  
Bing Li ◽  
Shuang Meng ◽  
Wei Hao Wang

The objective of this paper is to provide the references through finite element analysis for steel tube concrete beams bearing capacity settlement. The paper verified the correctness of the constitutive relation of concrete, the correctness and the model through the establishment of the concrete damaged plasticity model with recycled concrete details in the finite element analysis software ABAQUS. Then the stress characteristics of steel pipe concrete beam in bending condition under different substitution rate could be found through model calculation. The result is that the mid span bending - strain curve from simulation agreed to the experimental results, and the model is proved correct. Finally it came to the conclusions. Other things being equal, the recycled concrete filled square tube changed a lot in bending state when the substitution rate grows, but it didn’t occur to the circular one. In the meantime, the writer proposed the conjecture on the bearing capacity calculation of the two types of structure.


2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document