Analysis On-Board Charger to the Influence of Power Quality

2013 ◽  
Vol 724-725 ◽  
pp. 1330-1335
Author(s):  
Dong Ming Jia ◽  
Chun Lin Guo ◽  
Yu Bo Fan ◽  
Zhe Ci Tang

In this paper, one on-board charger in the charging station will be used to test its charging process. We screen the data which has the typical characteristics of power parameters from test data, and compared with the national power quality standards. We can get the following conclusions: (1) The electric car battery is capacitive load, it may transfer the reactive power to grid in the process of charging;(2) The test data imply that frequency deviation, power factor and VTHD e.g. indexes are qualified;(3) On-board charger is mainly produced the odd harmonics in the process of charging, with the increase of harmonic frequency, harmonic contain lower rate;(4) In practice, harmonic mainly reflects on the current, voltage only has a small distortion.

Author(s):  
B. R. Ananthapadmanabha ◽  
Rakesh Maurya ◽  
Sabha Raj Arya ◽  
B. Chitti Babu

Abstract This paper presents a concept of smart charging station using bidirectional half bridge converter for an electric vehicle. This battery charging station is useful for charging applications along with harmonics and reactive power compensation in a distribution system. A filter which is adaptive to the supply voltage frequency is used for the estimation of the 50 Hz component of load current. Due to additional features of vehicle charger, associated with the power quality improvement, there will be a drastic reduction in the current drawn from utility to meet the same load demand. The charging station presented in this paper is termed as smart with several function. The proposed smart charger is able to improve power quality of residential loads or other loads, not only during charging/discharging of the vehicle battery, but also in the absence of the vehicle. The Simulink model is developed with MATLAB software and its simulation results are presented. The level of current distortion during charging and and discharging mode is recorded 1.6 % and 2.4 % respectively with unity supply power factor during experiments. The performance of converter is evaluated during charging modes both in constant current (CC) and constant voltage (CV) modes.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Alex Sandria Jaya Wardhana

The quality of electrical power is a common condition that describes the characteristics of the parameters of electrical quantities. This study aims to determine the power quality profile that includes current, voltage, active power , reactive power , apparent power, frequency , harmonic current and voltage harmonics. Power quality profile is done by measuring for 24 hours to determine the characteristic qualities of the object of research in Balai Latihan Pendidikan Teknik (BLPT) Yogyakarta. Measurements were taken at each of output transformer 250 kVA at BLPT Yogyakarta . Based on the measurement results , the total peak load for loading in BLPT Yogyakarta is 129.242,45 VA or equal to 51.70% of the installed transformer capacity. The most prominent conditions of measurement results are any indication of the current flow in the neutral wire is high enough, ie 103,05 amperes, which will impact on the value of the energy loss in the neutral wire and losses in the transformer.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3971 ◽  
Author(s):  
Fermín Barrero-González ◽  
María Isabel Milanés-Montero ◽  
Eva González-Romera ◽  
Enrique Romero-Cadaval ◽  
Carlos Roncero-Clemente

Based on the assumption that vehicles served by petrol stations will be replaced by Electric Vehicles (EV) in the future, EV public charging station facilities, with off-board fast chargers, will be progressively built. The power demand of these installations is expected to cause great impact on the grid, not only in terms of peak power demanded but also in terms of power quality, because most battery chargers behave as non-linear loads. This paper presents the proposal of a novel comprehensive global control strategy for the power electronic converters associated with bidirectional three-phase EV off-board fast chargers. The Charging Station facility Energy Management System (CS-EMS) sends to each individual fast charger the active and reactive power setpoints. Besides, in case the charger has available capacity, it is assigned to compensate a fraction of the harmonic current demanded by other loads at the charging facility. The proposed approach works well under distorted and unbalanced grid voltages. Its implementation results in improvement in the power quality of each fast charger, which contributes to improvement in the power quality at the charging station facility level, which can even provide ancillary services to the distribution network. Simulation tests are conducted, using a 100 kW power electronic converter model, under different load and grid conditions, to validate the effectiveness and the applicability of the proposed control strategy.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1951
Author(s):  
Mihaela Popescu ◽  
Alexandru Bitoleanu ◽  
Mihaita Linca ◽  
Constantin Vlad Suru

This paper presents the use of a three-phase four-wire shunt active power filter to improve the power quality in the Department of Industrial Electronics of a large enterprise from Romania. The specificity is given by the predominant existence of single-phase consumers (such as personal computers, printers, lighting and AC equipment). In order to identify the power quality indicators and ways to improve them, an A-class analyzer was used to record the electrical quantities and energy parameters in the point of common coupling (PCC) with the nonlinear loads for 27 h. The analysis shows that, in order to improve the power quality in PCC, three goals must be achieved: the compensation of the distortion power, the compensation of the reactive power and the compensation of the load unbalance. By using the conceived three-leg shunt active power filter, controlled through the indirect current control method in an original variant, the power quality at the supply side is very much improved. In the proposed control algorithm, the prescribed active current is obtained as a sum of the loss current provided by the DC voltage and the equivalent active current of the unbalanced load. The performance associated with each objective of the compensation is presented and analyzed. The results show that all the power quality indicators meet the specific standards and regulations and prove the validity of the proposed solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
M. S. Ballal ◽  
H. M. Suryawanshi ◽  
T. Venkateswara Reddy

The basic power quality problems in the distribution network are voltage sag (dip), voltage flickering, and the service interruptions. STATCOM is a Flexible AC Transmission Systems (FACTS) technology device which can independently control the flow of reactive power. This paper presents the simulation and analysis of a STATCOM for voltage dip and voltage flickering mitigation. Simulations are carried out in MATLAB/Simulink to validate the performance of the STATCOM. A comparison between the six-pulse inverter and the five-level diode-clamped inverter is carried out for the performance of 66/11 KV distribution system.


Sign in / Sign up

Export Citation Format

Share Document