scholarly journals STUDI POWER QUALITY DI BALAI LATIHAN PENDIDIKAN TEKNIK (BLPT) YOGYAKARTA

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Alex Sandria Jaya Wardhana

The quality of electrical power is a common condition that describes the characteristics of the parameters of electrical quantities. This study aims to determine the power quality profile that includes current, voltage, active power , reactive power , apparent power, frequency , harmonic current and voltage harmonics. Power quality profile is done by measuring for 24 hours to determine the characteristic qualities of the object of research in Balai Latihan Pendidikan Teknik (BLPT) Yogyakarta. Measurements were taken at each of output transformer 250 kVA at BLPT Yogyakarta . Based on the measurement results , the total peak load for loading in BLPT Yogyakarta is 129.242,45 VA or equal to 51.70% of the installed transformer capacity. The most prominent conditions of measurement results are any indication of the current flow in the neutral wire is high enough, ie 103,05 amperes, which will impact on the value of the energy loss in the neutral wire and losses in the transformer.

2016 ◽  
Vol 5 (4) ◽  
pp. 26-47
Author(s):  
Yüksel Oğuz ◽  
Mustafa Şahin ◽  
Yılmaz Güven ◽  
Hatice Zeliha Tuğcu

The quality of energy has been defined to control harmonics caused by non-linear loads and international standards were brought to overcome the harmonic related problems. In determining the power quality, parameters like current-voltage harmonic, transient, flicker, current and voltage imbalance between phases, K factor are examined according to these international standards. The biggest disadvantage of harmonics is that they do not affect the power quality over an individual network but also affect the entire energy system primarily neighbouring facilities. Therefore, the energy system of Opium Alkaloids Plant was examined by using measurements information of current and voltage harmonics affecting the energy quality. And, it has been determined that the harmonics have a negative impact on energy quality. According to these findings, it has been proposed to install a well-designed filter for elimination of harmonics. Besides, it has been emphasised that new hardwares and devices should be chosen to support this harmonic filtering system in the future.


2012 ◽  
Vol 19 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Jarosław Zygarlicki ◽  
Janusz Mroczka

Variable-Frequency Prony Method in the Analysis of Electrical Power QualityThe article presents a new modification of the the least squares Prony method. The so-called variable-frequency Prony method can be a useful tool for estimating parameters of sinusoidal components, which, in the analyzed signal, are characterized by time-dependent frequencies. The authors propose use of the presented method for testing the quality of electric energy. It allows observation of phenomena which, when using traditional methods, are averaged in the analysis window. The proposed modification of least squares Prony method is based on introduction and specific selection of a frequency matrix. This matrix represents frequencies of estimated components and their variability in time.


Author(s):  
O. Salor ◽  
B. Gultekin ◽  
S. Buhan ◽  
B. Boyrazoglu ◽  
T. Inan ◽  
...  

2020 ◽  
Vol 22 (1-2) ◽  
pp. 137-144
Author(s):  
Hidajet Salkić ◽  
Amir Softić ◽  
Amer Salkić

The electric power system, as an integrated system for transmission, distribution and consumption of electricity, is one of the most complex technical and economic systems today. Customers affect on the voltage quality of power network, but the network also has an impact on customers. All disturbances in the network can disrupt operation of the network and affect on operation of the customers, as well as reduce the level of efficiency and operation life or even seriously damage network. Number of customers is increasing every day, as well as proportion of customers who generate disturbances in the network and, at the same time, are sensitive to them. These circumstances impose the need for frequent monitoring of the network, so the analysis of power quality is not unjustified cost but extremely important and profitable investment. The quality of electricity, as part of the overall quality supply of electricity customers in deregulated conditions of liberal electricity market becomes significant regulatory parameter for network operators and a significant contracting parameter on the electricity market. Network operators are obliged to establish a system of individual measurements and a system of permanent monitoring of power quality parameters to determine the state and improve the parameters to the standardized level. Technical parameters are determined by the recommendations made at the international level and may, but do not need, be legally binding. Maintaining a certain level of voltage quality at some point of the network is the responsibility of electricity distributor. This task distributor executes by limiting of negative effects of producer/customer to the network. Therefore, each electricity producer/customer is obliged to reduce own negative feedback effects (injection of higher harmonics, taking of reactive power, emissions of flickers and loads unbalances) to a prescribed, prearranged, limited values. There are many norms that describe the quality of electricity, but in Europe the best known is EN50160 (issued by CENLEC). This paper presents the approach to measuring the voltage quality at the point of electricity delivery from distributed source into distribution network from the aspect of limiting the negative feedback of distributed source on the voltage quality.


2015 ◽  
Vol 16 (4) ◽  
pp. 357-384 ◽  
Author(s):  
Suresh Mikkili ◽  
Anup Kumar Panda

Abstract Electrical power quality has been an important and growing problem because of the proliferation of nonlinear loads such as power electronic converters in typical power distribution systems in recent years. Particularly, voltage harmonics and power distribution equipment problems result from current harmonics produced by nonlinear loads. The Electronic equipment like, computers, battery chargers, electronic ballasts, variable frequency drives, and switch mode power supplies, generate perilous harmonics and cause enormous economic loss every year. Problems caused by power quality have great adverse economic impact on the utilities and customers. Due to that both power suppliers and power consumers are concerned about the power quality problems and compensation techniques. Power quality has become more and more serious with each passing day. As a result active power filter gains much more attention due to excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) ac power networks with nonlinear loads. However, this is still a technology under development, and many new contributions and new control topologies have been reported in the last few years. It is aimed at providing a broad perspective on the status of APF technology to the researchers and application engineers dealing with power quality issues.


2019 ◽  
Vol 4 (9) ◽  
pp. 1-8
Author(s):  
Montaser Abd El Sattar ◽  
Adel A. Elbaset ◽  
Ali H. KasemAlaboudy ◽  
Wessam Arafa Hafez

Wind energy system is lately receiving a lot of attention, because they are cost inexpensive, environmental safe and clean renewable energy source, as compared with nuclear and fossil fuel power generation. The operational characteristics of wind electric turbines has considerable dissatisfaction and stress on the quality of electric power system. Harmonics, variations of voltage and reactive power are most of power quality issues for grid connected with wind turbine. This paper introduces a design and simulation of unified power quality conditioner using a fuzzy controller to improve the power quality for Egyptian power grid connected to Zafarana Egypt wind system. The proposed performance of the unified power quality conditioner system is verified by simulating the model using MATLAB/SIMULINK environment. The simulation results showed that the proposed unified power quality conditioner provide efficient cancellation of both load current  harmonics  and supply voltage sag in addition to compensation of reactive power, and thus making the electrical grid connected wind energy system more efficient by improving the quality of power.


Author(s):  
Liu Yang ◽  
Qinyue Tan ◽  
Di Xiong ◽  
Zhengguang Liu

The overrun of transient power quality index caused by the large-capacity electric arc furnace (EAF) has become a prominent problem affecting the safe and stable operation of the power system. (1) In this paper, the relationship between arc furnace volt-age and current is derived based on the different stages of arc combustion, and the random variation of chaotic phenomenon of the arc voltage are simulated. Established an EAF model suitable for the study of transient power quality problems. (2) Take 50t AC EAF as an example to analyze the reactive power impact and the influence on the point of common coupling (PCC) voltage caused by the three-phase short circuit of the electrode. The results show that the experimental results are consistent with the theoretical analysis, verifying the correctness and effectiveness of the model. (3) When the three-phase short-circuit occurs, the reactive power impact is nearly 6 times that of normal operation, the short-circuit current is 2.66 times that of normal operation, and the effective value of the PCC voltage has dropped by 40.37%, which provides a theoretical basis for real-time compensation of impulsive reactive power and improvement of the transient power quality of the EAF.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2021 ◽  
Author(s):  
Yuehui Chen ◽  
Zhao Huang ◽  
Zhenfeng Duan ◽  
Pengwu Fu ◽  
Guandong Zhou ◽  
...  

This paper solves the problem of reactive power and harmonics compensation in a high-voltage (HV) distribution network supplying nonlinear loads. An inductive filtering (IF) approach where passive filters connect to the filtering winding of a four-winding inductive filtering transformer (FW-IFT) is presented to enhance the power quality of the public grid. This method can not only greatly suppress harmonic currents of the medium and/or low-voltage (LV) side, but also prevent them from flowing into the public grid. The new main circuit topology, where the FW-IFT has specific filtering winding by adopting the ampere-turn balance of the transformer, is presented. On the basis of the structure of the FW-IFT, the magnetic potential balanced equation and inductive filtering technology, its equivalent circuit and mathematical model are established, and the filtering performances are analyzed in detail. Simulation and experimental results rated at SN-10/0.38 of the FW-IFT are presented to prove the efficacy of the comprehensive enhancement of power quality on the grid side.


2013 ◽  
Vol 724-725 ◽  
pp. 1330-1335
Author(s):  
Dong Ming Jia ◽  
Chun Lin Guo ◽  
Yu Bo Fan ◽  
Zhe Ci Tang

In this paper, one on-board charger in the charging station will be used to test its charging process. We screen the data which has the typical characteristics of power parameters from test data, and compared with the national power quality standards. We can get the following conclusions: (1) The electric car battery is capacitive load, it may transfer the reactive power to grid in the process of charging;(2) The test data imply that frequency deviation, power factor and VTHD e.g. indexes are qualified;(3) On-board charger is mainly produced the odd harmonics in the process of charging, with the increase of harmonic frequency, harmonic contain lower rate;(4) In practice, harmonic mainly reflects on the current, voltage only has a small distortion.


Author(s):  
Budi Srinivasarao ◽  
G. Sreenivasan ◽  
Swathi Sharma

Since last decade, due to advancement in technology and increasing in the electrical loads and also due to complexity of the devices the quality of power distribution is decreases. A Power quality issue is nothing but distortions in current, voltage and frequency that affect the end user equipment or disoperation; these are main problems of power quality so compensation for these problems by DPFC is presented in this paper. The control circuits for DPFC are designed by using line currents, series reference voltages and these are controlled by conventional Neuro-Fuzzy controllers. The results are observed by MATLAB/SIMULINK model.


Sign in / Sign up

Export Citation Format

Share Document