Phase Change Materials Applied in Thermal Design

2013 ◽  
Vol 750-752 ◽  
pp. 1211-1214
Author(s):  
Shu Yang

Phase change material has been widely used in the fields of solar energy, aerospace, aviation, and buildings. In this paper, paraffin is applied in the thermal design of electronic equipment, in order to maintain a constant working circumstance. Finite-element analysis is implemented to analyze the feasibility of this thermal design.

2020 ◽  
Vol 90 (15-16) ◽  
pp. 1837-1850 ◽  
Author(s):  
Rimantas Barauskas ◽  
Audrone Sankauskaite ◽  
Vitalija Rubeziene ◽  
Ausra Gadeikyte ◽  
Virginija Skurkyte-Papieviene ◽  
...  

This study presents the developed computational finite element models for transient heat transfer analysis in fabrics enriched by phase change materials along with efforts to provide validation on the basis of obtained experimental results. The environment-friendly butyl stearate is used as a phase change material. Its melting/heating absorption takes place in temperature range from 19℃ to 34℃, and the solidification/heat release occurs from 34℃ to 19℃. An important aspect in this analysis is the investigation of appropriateness of the material samples dimensions selected for effective heat capacity against temperature measurements. For this purpose, we used the combined experimental and finite element simulation-based analysis. A similar computational procedure enabled us to estimate the effective latent specific heat relationship of the fabric with phase change materials coating. The direct usage of differential scanning calorimetry (DSC) measurement-based specific heat relationships against temperature in the finite element models ensured good compliance of the computed results with the experiment. For validation of the developed computational models the infrared radiation heating-cooling experiments on fabrics with different deposits of a phase change material were performed. The noticeable influence of content of phase change materials for transient thermal behavior during heating-cooling cycles was determined. The experimental results have been compared against the finite element simulation results.


2011 ◽  
Vol 497 ◽  
pp. 106-110
Author(s):  
You Yin ◽  
Sumio Hosaka

Performance of lateral phase change memories (LPCMs) is investigated by both electrical characterization and finite element analysis. Ge2Sb2Te5 lateral PCMs (GST-LPCMs) exhibit a low reset current but a bad endurance. By replacing GST with Sb2Te3 (ST) and adding a TiN layer between ST and electrodes, the ST-TiN-LPCMs are demonstrated to have a much improved endurance. Finite element analysis of the LPCMs with electric-thermal structural interaction shows that thermal confinement makes GST-LPCMs low-power consumptive but that high level stress makes them readily broken. In contrast, ST-TiN-LPCMs experience low level stress during operation but high power consumption is required.


2016 ◽  
Vol 51 (6) ◽  
pp. 733-743
Author(s):  
Muhammad Owais Raza Siddiqui ◽  
Danmei Sun

The thermal property of textile structures plays an important role in the understanding of thermal behaviour of the clothing. In this work, user-friendly GUI plug-ins have been developed to generate both microscopic and mesoscopic scale models for finite element analysis. The plug-ins were developed by using Abaqus/CAE as a platform. The GUI Plug-ins enable automatic model generation and prediction of the effective thermal conductivity of woven composite and microencapsulated Phase Change Materials composites via finite element analysis by applying boundary conditions. The predicted effective thermal conductivities from plug-ins have been compared with the results obtained from published experimental research work based on an established mathematical model. They are correlated well. Moreover, the influence of phase change materials on heat transfer behaviour of microencapsulated Phase Change Materials composites was further analysed.


2011 ◽  
Vol 52-54 ◽  
pp. 1411-1414 ◽  
Author(s):  
Bo Chen

Thermal design and analysis of a satellite borne FPGA is described in this paper. Thermal-conductive glue, vias and an aluminum bar were used to the FPGA and the PCB under the FPGA in order to help conduct the heat of the FPGA to heat sink. The results of finite element analysis showed that the case temperature of the FPGA decreased from 132.5°C to 55.4°C and the junction temperature decreased from 136.1°C to59.0 °C after the thermal design, which matches the requirements of thermal design.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


RSC Advances ◽  
2014 ◽  
Vol 4 (74) ◽  
pp. 39552-39557 ◽  
Author(s):  
Zhonghao Rao ◽  
Xinyu You ◽  
Yutao Huo ◽  
Xinjian Liu

The nano-encapsulated phase change materials (PCM), which have several good thermophysical properties, were proposed as potential for thermal energy storage.


2013 ◽  
Vol 683 ◽  
pp. 106-109
Author(s):  
Xiao Gang Zhao ◽  
Ying Pan

Phase change materials, abbreviated as PCM, due to the excellent heat storage performance, have been used as building materials and got more and more attention in recent years. The article introduce the building application of phase change material, and discuss its contribution to the building energy saving.


Sign in / Sign up

Export Citation Format

Share Document