Hot Deformation Behavior of as-Cast AZ61 Magnesium Alloy

2013 ◽  
Vol 750-752 ◽  
pp. 574-578
Author(s):  
Zhong Xue Feng ◽  
Qing Nan Shi ◽  
Fu Sheng Pan ◽  
Jun Tan ◽  
Liang Wei Chen ◽  
...  

Thermal compression tests of AZ61 magnesium alloy were performed at deformation temperature 25-400°C with strain rates ranged from 0.02 to 20 s-1, and the microstructure was studied. The conventional dynamic recrystallization (DRX) and shear zones were observed on grain boundaries at temperatures above 200°C. The shear zone and the temperature rise are considered to be responsible for the fracture of specimens. For the large internal stress concentration in the shear zones and the deformation incompatibility between matrix and shear zones, the fracture grew along with the shear zones and the failure occurred in the large deformation field of the matrix at the high strain rate 20 s-1 even at 400°C.

2014 ◽  
Vol 900 ◽  
pp. 588-591
Author(s):  
Gang Chen ◽  
Wei Chen ◽  
Guo Wei Zhang ◽  
Jing Zhai ◽  
Li Ma ◽  
...  

The deformation behavior and constitutive equation of Mg-4Al-3Ca-1.5Zn-1Nd-0.2Mn alloy were investigated using hot compression tests at the temperatures range of 200, 250, 300, and 350°C with the constant strain rates of 0.001, 0.01, 0.1 And1 s-1. The influence of strain was also incorporated in the constitutive equation by considering the effects of strain on material constants which are consist of A, α, β, n and activation energy Q. The predicted flow stress curves using the proposed constitutive equations well agree with the experimental results of the flow stress for experimental Alloy.


2011 ◽  
Vol 284-286 ◽  
pp. 1579-1583
Author(s):  
Ping Li Mao ◽  
Zheng Liu ◽  
Chang Yi Wang ◽  
Feng Wang

The dynamic deformation behavior of an as-extruded Mg-Gd-Y magnesium alloy was studied by using Split Hopkinson Pressure Bar (SHPB) apparatus under high strain rates of 102 s-1 to 103s-1 in the present work, in the mean while the microstructure evolution after deformation were inspected by OM and SEM. The results demonstrated that the material is not sensitive to the strain rate and with increasing the strain rate the yield stress of as-extruded Mg-Gd-Y magnesium alloy has a tendency of increasing. The microstructure observation results shown that several deformation localization areas with the width of 10mm formed in the strain rates of 465s-1 and 2140s-1 along the compression axis respectively, and the grain boundaries within the deformation localization area are parallel with each other and are perpendicular to the compression axis. While increasing the strain rate to 3767s-1 the deformation seems become uniform and all the grains are compressed flat in somewhat. The deformation mechanism of as-extruded Mg-Gd-Y magnesium alloy under high strain rate at room temperature was also discussed.


2014 ◽  
Vol 511-512 ◽  
pp. 63-69
Author(s):  
Rui Jia ◽  
Fu Zhong Wang

Deformation behavior of steel 33Μn2v for oil well tube was studied by hot compression tests conducted at various temperatures and strain rates.The Kumar model was developed to predict the hot deformation behavior of steel 33Mn2V for oil well tube.In this regard,the hot compression tests were carried out at the temperatures from 750°C to 1200°C and at the strain rates of 0.02s1 to 0.16 s1.The experimental data were then used to determine the constants of developed constitutive equations. The Kumar model can be represented by ZenerHollomon parameter in a hyperbolic sinusoidal equation form.The apparent activation energy of deformation is calculated to be 342.1481kJ/Mol.Dynamic recrystallization of steel 33Mn2V occur and the completion of the critical deformation is small,termination error and the initial deformation is smaller.Therefore,its easy for the steel 33Mn2V to the occurrence and completion of dynamic recrystallization.


2021 ◽  
Vol 8 (1) ◽  
pp. 318-326
Author(s):  
Olga Mareeva ◽  
Vladimir Ermilov ◽  
Vera Snezhko ◽  
Dmitrii Benin ◽  
Alexander Bakshtanin

Abstract This paper is an experimental study of the quasi-static mechanical compressive properties of the reinforced closed-cell aluminum alloy foams with different cell orientations at different strain rates. The reinforced foam samples were obtained via the powder metallurgical route. The results of the compression tests revealed that the deformation behavior and mechanical properties of foamed aluminum composites are highly dependent on the orientation of the reinforcing mesh. Differences in the deformation behavior of foams appear to be influenced by the mechanical properties of the matrix material, by foam deformation mechanisms, and by the mechanical properties of the reinforcement. The yield stress, plateau stress, densification stress, and energy absorption capacity of unreinforced foam samples improved linearly with increasing strain rate due to dynamic recrystallization and softening of the foam matrix material. The reinforced foam samples exhibit nonlinear deformation behavior. It was also found that the mechanical properties reduction of transverse reinforced foams was slightly lower compared to foams with longitudinal reinforcement at varying strain rates because of the large contribution of the mechanical properties of the reinforcement. The results of the present study can be employed to modelling and obtain impact-resistant fillers for complex structures in transport construction.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1020 ◽  
Author(s):  
Kristina Kittner ◽  
Madlen Ullmann ◽  
Thorsten Henseler ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

In the present work, the microstructure, texture, mechanical properties as well as hot deformation behavior of a Mg-2Zn-1Al-0.3Ca sheet manufactured by twin roll casting were investigated. The twin roll cast state reveals a dendritic microstructure with intermetallic compounds predominantly located in the interdendritic areas. The twin roll cast samples were annealed at 420 °C for 2 h followed by plane strain compression tests in order to study the hardening and softening behavior. Annealing treatment leads to the formation of a grain structure, consisting of equiaxed grains with an average diameter of approximately 19 µm. The twin roll cast state reveals a typical basal texture and the annealed state shows a weakened texture, by spreading basal poles along the transverse direction. The twin roll cast Mg-2Zn-1Al-0.3Ca alloy offers a good ultimate tensile strength of 240 MPa. The course of the flow curves indicate that dynamic recrystallization occurs during hot deformation. For the validity range from 250 °C to 450 °C as well as equivalent logarithmic strain rates from 0.01 s−1 to 10 s−1 calculated model coefficients are shown. The average activation energy for plastic flow of the twin roll cast and annealed Mg-2Zn-1Al-0.3Ca alloy amounts to 180.5 kJ/mol. The processing map reveals one domain with flow instability at temperatures above 370 °C and strain rates ranging from 3 s−1 to 10 s−1. Under these forming conditions, intergranular cracks arose and grew along the grain boundaries.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1940 ◽  
Author(s):  
Jianmei Kang ◽  
Yuhui Wang ◽  
Zhimeng Wang ◽  
Yiming Zhao ◽  
Yan Peng ◽  
...  

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s−1 to 10 s−1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 846 ◽  
Author(s):  
Changmin Li ◽  
Yuan Liu ◽  
Yuanbiao Tan ◽  
Fei Zhao

The H13-mod steel optimized by composition and heat treatment has reached the performance index of the shield machine hob. The hot deformation behavior of the H13-mod steel was investigated by compression tests in the temperature range from 900 to 1150 °C and the strain rate range from 0.01 to 10 s−1. The true stress-strain curve showed that the rising stress at the beginning of deformation was mainly caused by work hardening. After the peak stress was attained, the curve drop and the flow softening phenomenon became more obvious at low strain rates. The flow behavior of the H13-mod steel was predicted by a strain-compensated Arrhenius-type constitutive equation. The relationship between the material constant in the Arrhenius-type constitutive equation and the true strain was established by a sixth-order polynomial. The correlation coefficient between the experimental value and the predicted value reached 0.987, which indicated that the constitutive equation can accurately estimate the flow stress during the deformation process. A good linear correlation was achieved between the peak stress (strain), critical stress (strain) and the Zener‒Hollomon parameters. The processing maps of the H13-mod steel under different strains were established. The instability region was mainly concentrated in the high-strain-rate region; however, the microstructure did not show any evidence of instability at high temperatures and high strain rates. Combined with the microstructure and electron backscattered diffraction (EBSD) test results under different deformations, the optimum hot working parameters were concluded to be 998–1026 °C and 0.01–0.02 s−1 and 1140–1150 °C and 0.01–0.057 s−1.


2018 ◽  
Vol 941 ◽  
pp. 458-467
Author(s):  
Nima Safara Nosar ◽  
Fredrik Sandberg ◽  
Göran Engberg

The behavior of a 13% chromium steel subjected to hot deformation has been studied by performing hot compression tests in the temperature range of 850 to 12000C and at strain rates from 0.01 to 10 s-1. The uniaxial hot compression tests were performed on a Gleeble thermo-mechanical simulator. The best function that fits the peak stress for the material and its relation to the Zener-Hollomon parameter (Z) is derived. The average activation energy of this alloy in the entire test domain was found to be about 557 [kJmol-1] and the dynamic recrystallization (DRX) kinetics was studied to find the fraction DRX during deformation.


2014 ◽  
Vol 788 ◽  
pp. 45-51
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Feng Li Ren ◽  
Qiang Wang

The elevated temperature flow stress behavior of Mg-9Gd-2.5Y-1Nd-0.5Zr magnesium alloy was carried out by Gleeble-1500 thermal mechanical simulator in the temperature range of 460-520°C and in strain rates of 0.0005~1s-1 at a strain of 0.6. The optical microscopy was used for microstructure characterization. The results showed that the flow stress increases with increasing strain rates and decreasing temperature. All the deformed magnesium alloy specimens show a dynamic recovery characters in the temperature range from 460~500°C, and show dynamic recrystallization characters at 520°C. The flow stress of this alloy can be represented by Zener-Hollomon parameter function, and values of related parameters A, α and n, are 2.24×1013s-1、0.027MPa-1 and 2.93, respectively. Its activation energy for hot deformation Q is 212.6kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document