Hot Deformation Behavior and Constitutive Equation of Mg-4Al-3Ca -1.5Zn-1Nd-0.2Mn Magnesium Alloy As-Extruded

2014 ◽  
Vol 900 ◽  
pp. 588-591
Author(s):  
Gang Chen ◽  
Wei Chen ◽  
Guo Wei Zhang ◽  
Jing Zhai ◽  
Li Ma ◽  
...  

The deformation behavior and constitutive equation of Mg-4Al-3Ca-1.5Zn-1Nd-0.2Mn alloy were investigated using hot compression tests at the temperatures range of 200, 250, 300, and 350°C with the constant strain rates of 0.001, 0.01, 0.1 And1 s-1. The influence of strain was also incorporated in the constitutive equation by considering the effects of strain on material constants which are consist of A, α, β, n and activation energy Q. The predicted flow stress curves using the proposed constitutive equations well agree with the experimental results of the flow stress for experimental Alloy.

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1812 ◽  
Author(s):  
Zhen Wang ◽  
Aiqin Wang ◽  
Jingpei Xie ◽  
Pei Liu

The hot deformation behavior of nano-SiCp/Al-Si composites was studied by isothermal compression tests at 470–530 °C and strain rates of 0.01–5 s−1. A strain-compensation constitutive model was developed with a Z parameter and an Arrhenius function, and its accuracy was verified by error analysis. The results show that the flow stress of the composites decreased with the increase in deformation temperature and the decrease in strain rate. The average activation energy for nano-SiC particle-reinforced Al-Si matrix composites was 277 kJ/mol, which was larger than the activation energy for self-diffusion of pure aluminum. The average relative error was calculated as 2.88%, indicating the strain-compensated constitutive equation could accurately predict the hot deformation behavior of nano-SiCp/Al-Si composites.


2014 ◽  
Vol 788 ◽  
pp. 45-51
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Feng Li Ren ◽  
Qiang Wang

The elevated temperature flow stress behavior of Mg-9Gd-2.5Y-1Nd-0.5Zr magnesium alloy was carried out by Gleeble-1500 thermal mechanical simulator in the temperature range of 460-520°C and in strain rates of 0.0005~1s-1 at a strain of 0.6. The optical microscopy was used for microstructure characterization. The results showed that the flow stress increases with increasing strain rates and decreasing temperature. All the deformed magnesium alloy specimens show a dynamic recovery characters in the temperature range from 460~500°C, and show dynamic recrystallization characters at 520°C. The flow stress of this alloy can be represented by Zener-Hollomon parameter function, and values of related parameters A, α and n, are 2.24×1013s-1、0.027MPa-1 and 2.93, respectively. Its activation energy for hot deformation Q is 212.6kJ/mol.


2015 ◽  
Vol 34 (6) ◽  
Author(s):  
Xiaolan Han ◽  
Shengdun Zhao ◽  
Chenyang Zhang ◽  
Shuqin Fan ◽  
Fan Xu

AbstractIn order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s


2014 ◽  
Vol 968 ◽  
pp. 3-6
Author(s):  
Wei Chen ◽  
Gang Chen ◽  
Jing Zhai ◽  
Li Ma

The constitutive equations may properly describe the flow behavior of the materials. In the present study, the constitutive equation of Mg-13Al-3Ca-3Zn-1Nd-0.2Mn alloy were investigated using hot compression tests at the temperatures range of 200, 250, 300, 350 and 400°Cwith the constant strain rates of 0.001, 0.01, 0.1, 1 and 10s-1.The hot working constitutive base analysis has been conducted on the experimental alloy. The related material constants n, α and β, as well as the activation energy Q for each temperature regime have been determined. At last, the constitutive equations is given.


2019 ◽  
Vol 38 (2019) ◽  
pp. 84-91 ◽  
Author(s):  
E. Shafiei ◽  
A. Soltani Tehrani

AbstractIn this study, the logarithmic-power model has been used to predict hot deformation behavior of alloy 800H at high temperatures. This is for the first time that the logarithmic-power model is examined to model the flow stress curves with negligible flow softening at high strain rates. To this end, flow stress curves of alloy 800H obtained at deformation temperatures from 850°C to 1050°C and at strain rates of 5 and 10 S−1 were employed. The Johnson–Cook model and Shafiei constitutive equation were also used to prove the accuracy of the logarithmic-power model in prediction of flow stress curves of alloy 800H. Evaluation of mean error of flow stress at different deformation conditions showed that the logarithmic-power model can give a more precise estimation of flow stress curves than Johnson–Cook model. Furthermore, it was found out that the accuracy of the Logarithmic-power model and Shafiei constitutive equation was roughly the same in terms of maximum errors obtained in prediction of flow stress curves. Accordingly, it can be concluded that the logarithmic-power model can be employed as a comprehensive model for a wide range of deformation conditions.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 766
Author(s):  
Wang ◽  
Wang ◽  
Zhu ◽  
Xu ◽  
Cui ◽  
...  

The effect of V addition on the hot deformation behavior of AA5083 was investigated. Single axial compression tests were conducted on the cast and homogenized samples with strain rates ranging from 0.01 to 10 s−1 and deformation temperatures ranging from 300 to 450 °C. The results showed that the contents of V (0–0.10, in wt.%) do not change the grain size of alloy 5083 significantly in the as cast and homogenized conditions, but the formation of fine Al3V particles in the alloy with an addition of 0.05 wt.% V can increase the flow stress, and its activation energy is 10.0% higher than that of V-free alloy 5083. The processing maps show that the appropriate process domain for alloy 5083 with 0.05 wt.% V changes at different true strains. The mechanism for deformation softening is discussed as well.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 481 ◽  
Author(s):  
Zhang ◽  
Lian ◽  
Chen ◽  
Sun ◽  
Zhang ◽  
...  

The hot deformation behavior and microstructure evolution of a 7.5 vol% TiBw/near α-Ti composite with fine matrix microstructure were investigated under the deformation conditions in a temperature range of 800–950 °C and strain rate range of 0.001–1 s−1 using plane strain compression tests. The flow stress curves show different characteristics according to the various deformation conditions. At a higher strain rate (1 s−1), the flow stress of the composite continuously increases until a peak value is reached. The activation energy is 410.40 kJ/mol, much lower than the activation energy of as-sintered or as-forged composites. The decreased activation energy is ascribed to the breaking of the TiBw reinforcement during the multi-directional forging and the resultant fine matrix microstructure. Refined reinforcement and refined matrix microstructure significantly improve the hot deformation ability of the composite. The deformation conditions determine the morphology and fraction of α and β phases. At 800–900 °C and 0.01 s−1 the matrix α grains are much refined due to the continuous dynamic recrystallization (CDRX). The processing map is constructed based on the hot deformation behavior and microstructure evolution. The optimal hot processing window is determined to be 800–950 °C/0.001–0.01 s−1, which lead to CDRX of primary α grains or dynamic recovery (DRV) and dynamic recrystallization (DRX) of β phase.


Author(s):  
H. R. Rezaei Ashtiani ◽  
H. Bisadi ◽  
M. H. Parsa

The experimental stress–strain data from isothermal hot compression tests, in a wide range of temperatures (350–500 °C) and strain rates (0.005–0.5 s−1), were employed to develop constitutive equations in a commercially pure aluminum (AA1070). The effects of temperature and strain rate on the hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. The results show that the hardening rate and flow stress are evidently affected by both deformation temperature and strain rate. The power law, exponential, and hyperbolic sinusoidal types of Zener–Hollomon equations were used to determine the hot deformation behavior of AA1070. The results suggested that the highest correlation coefficient was achieved for the hyperbolic sine law for the studied material. So the proposed deformation constitutive equations can give an accurate and precise estimate of the flow stress for AA1070, which means it can be used for numerical simulation of hot forming processes and for choosing proper forming parameters in engineering practice accurately.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Weiqi Kang ◽  
Yi Yang ◽  
Sheng Cao ◽  
Lei Li ◽  
Shewei Xin ◽  
...  

The hot deformation behavior of a new Al–Mn–Sc alloy was investigated by hot compression conducted at temperatures from 330 to 490 °C and strain rates from 0.01 to 10 s−1. The hot deformation behavior and microstructure of the alloy were significantly affected by the deformation temperatures and strain rates. The peak flow stress decreased with increasing deformation temperatures and decreasing strain rates. According to the hot deformation behavior, the constitutive equation was established to describe the steady flow stress, and a hot processing map at 0.4 strain was obtained based on the dynamic material model and the Prasad instability standard, which can be used to evaluate the hot workability of the alloy. The developed hot processing diagram showed that the instability was more likely to occur in the higher Zener–Hollomon parameter region, and the optimal processing range was determined as 420–475 °C and 0.01–0.022 s−1, in which a stable flow and a higher power dissipation were achieved.


Sign in / Sign up

Export Citation Format

Share Document