Research on Mechanical Properties, Compatibility, Flame Retardancy, Hot-Air Ageing Resistance of Hydrogenated Nitrile-Butadiene Rubber/Chloroprene Rubber Blends

2013 ◽  
Vol 750-752 ◽  
pp. 816-819 ◽  
Author(s):  
Teng Teng Wang ◽  
Guo Lun Zhong ◽  
Li Ling Zhou

The mechanical properties, compatibility, flame retardancy property, hot-air ageing resistance of hydrogenated nitrile-butadiene rubber (HNBR) / chloroprene rubber (CR) blends were investigated. With increasing CR, stress at 100% elongation, shore A hardness, limited oxygen index of HNBR/CR blends increased, while the tensile strength, hot-air aging resistance of the blends decreased. Differential scanning calorimeter (DSC) revealed that it’s incompatible with both HNBR and CR before vulcanization, however they became compatible completely after vulcanization as indicated by Dynamic Mechanical Analysis (DMA).

2014 ◽  
Vol 87 (2) ◽  
pp. 360-369 ◽  
Author(s):  
Junping Zheng ◽  
Jin Tan ◽  
Hong Gao ◽  
Chuanzeng Wang ◽  
Zhilei Dong

ABSTRACT To satisfy some special demands of many applications in the fields of aerospace and the electronic industry, low temperature resistant and high electrical insulation chloroprene rubber (CR) was prepared by blending pristine CR with different weight ratios of butadiene rubber (BR). The low temperature resistance, electrical insulation properties, and mechanical properties of CR/BR blends were investigated. With increasing BR content, the low temperature resistance and electrical insulation properties were improved, whereas the tensile strength and elongation at break decreased. For the CR/BR (65/35) blend, filled with SiO2, the brittleness temperature (Tb) was reduced to −61 °C and the high electrical insulation properties were obtained without sacrificing mechanical properties too much. The tan δ plots of CR/BR blends, investigated by dynamic mechanical analysis, also revealed that BR could reduce glass transition temperature (Tg) and improve low temperature resistance of CR. The phase contrast microscope images of CR/BR blends demonstrated that the phase structure of the blends changed with increasing BR content. Furthermore, the fracture surfaces of CR/BR blends, observed by scanning electron microscopy, showed that the compatibility of CR/BR blends was poor although the CR/BR blends were homogeneous in macrostructure.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2016 ◽  
Vol 23 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Ru Liang Zhang ◽  
Li Fen Zhao ◽  
Yu Dong Huang ◽  
Li Liu

AbstractThe effect of coupling agents on the mechanical properties of nitrile butadiene rubber (NBR)/organophilic montmorillonite (OMMT) clay nanocomposites was studied using three different types of silane coupling agents, which were γ-(aminopropyl)triethoxysilane, γ-(mercaptopropyl) triethoxy silane, and bis-[(γ-triethoxy silane)proply] tetrasulfur. The NBR/OMMT nanocomposites were prepared via the melt compounding with OMMT clay. The effect of silane coupling agents on the dispersion of OMMT in the polymer matrix was studied by X-ray diffraction. Dynamic mechanical analysis was employed to investigate the mechanical properties change induced by the silane coupling agents. The results suggest improved mechanical properties for the nanocomposites with coupling agents of γ-(mercaptopropyl) triethoxy silane and bis-[(γ-triethoxy silane)proply] tetrasulfur, whereas reduced mechanical properties were observed for nanocomposites with γ-(aminopropyl)triethoxysilane.


2019 ◽  
Vol 384 (1) ◽  
pp. 1800169 ◽  
Author(s):  
Do Quang Khang ◽  
Tran Kim Lien ◽  
Luong Nhu Hai ◽  
Do Quang Minh ◽  
Do Trung Sy ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yiming Wang ◽  
Dayong Jiang ◽  
Xin Wen ◽  
Tao Tang ◽  
Karolina Szymańska ◽  
...  

Poly(butylene succinate) is one of the most promising biodegradable polymers, but its applications are limited by poor flame retardancy. In this work, poly(butylene succinate)/diethylphosphinate (PBS/AlPi) composites were fabricated to investigate the effect of AlPi on their thermal stability, flame retardancy, and mechanical properties. It was found that the high content of AlPi decreased the thermal stability of PBS, and the decrease became stronger under the air atmosphere. When the content of AlPi reached 25wt%, the flame retardancy was improved with limited oxygen index (LOI) of 29.5%, V0 rating in UL-94 vertical burning test, and 49.3% reduction on the peak of heat release rate (PHRR) in cone calorimeter test. Meanwhile, the addition of AlPi could improve the mechanical properties of PBS with high tensile strength and Young’s modulus, which was ascribed to the compatible effect of maleic anhydride-grafted poly(butylene succinate) (PBS-g-MA) with good filler dispersion and strong matrix-particles interaction. Thus, the AlPi was an effective flame retardant to PBS, so that PBS/AlPi composites displayed excellent flame retardancy without seriously sacrificing other comprehensive performances.


Sign in / Sign up

Export Citation Format

Share Document