Electrospun La3+-Doped ZnO Nanofibers with High Photocatalytic Activity for Rhodamine B Degradation

2013 ◽  
Vol 779-780 ◽  
pp. 337-342
Author(s):  
Qing Qing Miao ◽  
Ying Mao Tang ◽  
Wen Wen Chen ◽  
Wei Wei Zheng ◽  
Qing Rong Qian ◽  
...  

Grape-like structure La3+-doped ZnO nanofibers with different doping concentrations were prepared by electrospinning-calcination technology. The resultant nanofibers were characterized by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), photoluminescence spectrum (PL) and X-ray photoelectron spectrum (XPS) respectively. The photocatalytic activities of the nanofibers for the degradation of Rhodamine B (RhB) in aqueous solution were studied. Results show that the doping concentration of La3+ has an significant influence on the photocatalytic performance of the nanofibers, and 2 mol.% La3+ is the optimal doping concentration.

2012 ◽  
Vol 512-515 ◽  
pp. 334-338 ◽  
Author(s):  
Tie Kun Jia ◽  
Fan Zhang ◽  
Xiao Feng Wang ◽  
Wei Min Wang

Zn-doped SnO2 seaflower like hierarchical architectures have been synthesized via a solvothermal synthesis route in the mixed solvents of ethanol and deionized water. The observations of field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed that Zn-doped SnO2 seaflower like hierarchical architectures were assembled by the nanowires. The preferential growth direction of nanowires was determined based on the analysis of high resolution transmission electron microscopy (HRTEM). The products were also characterized by X-ray diffraction (XRD) and X-photoelectron spectrum (XPS), and the results indicated that Sn4+ ions were successfully substituted by Zn2+. The photocatalytic activity of Zn-doped SnO2 seaflower like hierarchical architectures was evaluated by the degradation of RhB aqueous solution and the results showed that the product had high photocatalytic activity efficiency.


2013 ◽  
Vol 709 ◽  
pp. 7-10
Author(s):  
Jing Li ◽  
Xi Hua Du ◽  
Wei Min Dai ◽  
Yong Cai Zhang

A low temperature (130 °C) hydrothermal method was proposed for the synthesis of SnO2-SnS2 nanocomposite. The composition, structure and optical property of the as-synthesized SnO2-SnS2 nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic activity was tested by the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation. It was found that the as-synthesized SnO2-SnS2 nanocomposite exhibited high photocatalytic activity in the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation, whereas SnO2 nanoparticles displayed no photocatalytic activity in the reduction of Cr(VI) in water under visible light (λ > 420 nm) irradiation.


2013 ◽  
Vol 850-851 ◽  
pp. 156-159
Author(s):  
Xin Yan Wu ◽  
Wei Xiong

TiO2 nanosheets have been successfully synthesized via a simple sol-gel process. These nanostructures were characterized by transmission electron microscopy (TEM) and x-ray energy dispersive spectrometer (EDS). The sheet-shaped single-crystalline nanostructures are pure rutile-phase structure, with landscape dimension of 10-45 nm. EDS investigation confirms that the TiO2 nanosheets are only composed of Ti and O, and the atomic ration of Ti and O is close to 1:2. High photocatalytic activity might be expected for those TiO2 nanosheets due to their large surface area.


2013 ◽  
Vol 114 (24) ◽  
pp. 243503 ◽  
Author(s):  
A. Kovács ◽  
A. Ney ◽  
M. Duchamp ◽  
V. Ney ◽  
C. B. Boothroyd ◽  
...  

2012 ◽  
Vol 465 ◽  
pp. 44-50 ◽  
Author(s):  
Su Jun Yuan ◽  
Yao Gang Li ◽  
Qing Hong Zhang ◽  
Hong Zhi Wang

The highly dispersed TiO2 sols composed of anatase crystallites (ca.5 nm) were prepared by peptization of amorphous precipitates with trifluoroactic acid (TFA) during the synthesis. The size and crystallinity of the particles were tuned by the subsequent hydrothermal treatment. The prepared TiO2 nanocrystals were characterized by X-ray diffraction and transmission electron microscopy (TEM). The TEM results indicated that the growth of the crystallites could be inhibited by the increasing addition of TFA and the average sizes of TiO2 nanocrystals were all ultrafine. The degradation of phenol over the nanocrystals after calcination at 500 °C was investigated. The photocatalytic results showed that the sample with a high addition of TFA obtained a better photocatalytic property than that of the commercial TiO2


Author(s):  
Fengfeng Li ◽  
Mingxi Zhang ◽  
Jin Wang ◽  
Yongfeng Cai ◽  
Dushao Zhao ◽  
...  

Abstract In this work, we fabricate a highly efficient photocatalytic AgBr/Ag2CO3 heterojunction through the co-precipitation method. The obtained samples were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectra and X-ray photoelectron spectroscopy. The photocatalytic activities of obtained samples can be assessed by visible light (λ ≥ 400 nm) degradation of rhodamine B solution. X-ray diffraction revealed that the crystallinity of the AgBr/Ag2CO3heterojunction was significantly higher than pure AgBr and Ag2CO3. Moreover, the AgBr/ Ag2CO3 heterojunction prepared at pH = 6 has the best photocatalytic performance, it can raise the degradation degree of rhodamine B over 95% at 20 min. Finally, a possible photocatalytic mechanism is discussed.


2005 ◽  
Vol 877 ◽  
Author(s):  
M. Wei ◽  
N. Khare ◽  
K. A. Yates ◽  
D. Zhi ◽  
J. L. MacManus-Driscoll

AbstractNanosized Co-doped ZnO samples were synthesized using an ultrasonic spray assisted chemical vapour deposition method. Microstructural and magnetic properties of these samples were studied. The room-temperature ferromagnetism was observed in the Co-doped ZnO. Also, x-ray analysis revealed a wurtzite ZnO structure with a small change of the lattice constants due to the doping of Co in ZnO. Raman spectroscopy of the Co-doped ZnO films indicated direct substitution of Co. Scanning electron microscopy showed nanostructured Co-doped ZnO with a ring or cup shape. Transmission electron microscopy analysis revealed nano grains within the rings of an average diameter of around 10 nm. Both energy dispersive spectroscopy and energy-filtered transmission electron microscopy indicated a uniform distribution of Co.


NANO ◽  
2017 ◽  
Vol 12 (01) ◽  
pp. 1750005 ◽  
Author(s):  
Bin Zeng ◽  
Wujun Zeng

Graphene loaded hexagonal CuS/Ag2S nanoplates have been successfully synthesized. Scanning electron microscopy and transmission electron microscopy observations show that hexagonal CuS/Ag2S nanoplates are tightly anchored onto graphene. The experimental results show that these nanocomposites have a highly visible-light photocatalytic performance. The high visible photocatalytic activities can be attributed to direct photoinduced interfacial charge transfer in the hexagonal CuS/Ag2S nanoplates and the further electrons transfer from CuS/Ag2S to graphene.


Sign in / Sign up

Export Citation Format

Share Document