Methane Catalytic Cracking to Make COx Free Hydrogen and Carbons (Nanotubes, Microfibers, Microballs)

2009 ◽  
Vol 79-82 ◽  
pp. 585-588
Author(s):  
Li Zhen Gao ◽  
Wei Ke Zhang ◽  
Andrew Cornejo ◽  
Hui Tong Chua

The catalytic cracking of methane to produce COx free hydrogen and a spectrum of advanced carbon nano materials was studied. Over several genres of catalysts by cracking of undiluted methane we produced hydrogen and highly graphitic carbon nanotubes (single-, thin- and multi-walled), straight microfibers, nano onions over the solid oxides solution, perovskite structured mixed oxides and mesoporous supported catalysts. The influences of reaction temperature on the methane conversion over various catalysts were investigated. The yields of carbon materials were monitored during the cracking running and the results indicated that these series of catalysts are promising for the commercialization of carbon nanotubes, microfibers and microballs.

2012 ◽  
Vol 490-495 ◽  
pp. 3311-3314
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Nano-carbon materials were synthesized by catalytic decomposition of acetylene at low temperature 400 °C and 420 °C using iron supported on sodium chloride as catalyst. The samples were examined by X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy. The results show that nano onion-like fullerenes encapsulating Fe cores with diameters in the range 20-50 nm were obtained when the reaction temperature was 400 °C and there were no carbon nanotubes in the product. These onion-like fullerenes are composed of concentric graphene layers with an interlayer distance of 0.348 nm between the layers. When the reaction temperature was 420 °C, carbon nanotubes with a structure of rope and low graphitization degree were obtained.


2021 ◽  
Author(s):  
Laura Esteves ◽  
Hugo Alvarenga Oliveira ◽  
Y. T. Xing ◽  
Fabio Barboza Passos

Carbon nanotubes (CNT) application in heterogeneous catalysis has been attracting growing interest. However, the use of CNT-supported catalysts in the chemical vapor deposition for the production of new CNT is...


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 234 ◽  
Author(s):  
Urooj Kamran ◽  
Young-Jung Heo ◽  
Ji Won Lee ◽  
Soo-Jin Park

Carbon-based materials, including graphene, single walled carbon nanotubes (SWCNTs), and multi walled carbon nanotubes (MWCNTs), are very promising materials for developing future-generation electronic devices. Their efficient physical, chemical, and electrical properties, such as high conductivity, efficient thermal and electrochemical stability, and high specific surface area, enable them to fulfill the requirements of modern electronic industries. In this review article, we discuss the synthetic methods of different functionalized carbon materials based on graphene oxide (GO), SWCNTs, MWCNTs, carbon fibers (CFs), and activated carbon (AC). Furthermore, we highlight the recent developments and applications of functionalized carbon materials in energy storage devices (supercapacitors), inkjet printing appliances, self-powered automatic sensing devices (biosensors, gas sensors, pressure sensors), and stretchable/flexible wearable electronic devices.


2014 ◽  
Vol 93 ◽  
pp. 164-167 ◽  
Author(s):  
Joon Won Lim ◽  
Atta Ul Haq ◽  
Sang Ouk Kim

Polymer grafting from graphitic carbon materials has been explored for several decades. Currently existing methods mostly employ harsh chemical treatment to generate defect site in graphitic carbon plane, which are used as active site for polymerization of precursors. Unfortunately, the treatment cause serious degradation of chemical structure and material properties. Here, we present a straightforward route for growth of polyaniline chain from nitrogen (N)-sites of carbon nanotubes. N site in the CNT wall initiates the polymerization of aniline monomer, which generates seamless hybrids composed of polyaniline directly grafted onto the CNT walls. The synthesized hybrids show excellent synergistic electrochemical performance, and are employed for electrodes of pseudo-capacitor. This approach offers an efficient way to obtain hybrid system consisting of conducting polymers directly grafted from graphitic dopant sites.


2012 ◽  
Vol 66 (12) ◽  
Author(s):  
Jaciel Robles-Nuñez ◽  
Fernando Chiñas-Castillo ◽  
Manuel Sanchez-Rubio ◽  
Javier Lara-Romero ◽  
Rafael Huirache-Acuña ◽  
...  

AbstractMoS2 sheathed carbon nanotubes have been successfully synthesized using a hydrothermal route under controlled conditions. The resultant material was studied by XRD, EDS, HRTEM, and Raman spectroscopy. Advantages of the preparation presented here compared to other methods are: a) lower reaction temperature, b) high yield of sheathed nanotubes including ends and full body, c) simple process with non-toxic materials, and d) no damage inflicted to nanotubes.


2015 ◽  
Vol 44 (46) ◽  
pp. 19956-19965 ◽  
Author(s):  
A. S. Bozzi ◽  
R. L. Lavall ◽  
T. E. Souza ◽  
M. C. Pereira ◽  
P. P. de Souza ◽  
...  

In this paper we show a very simple route for the incorporation of catalytically active niobium species on the surface of carbon materials, such as graphene oxide, carbon nanotubes and activated carbon.


2012 ◽  
Vol 417-418 ◽  
pp. 53-58 ◽  
Author(s):  
Kamyar Keyvanloo ◽  
Ali Mohamadalizadeh ◽  
Jafar Towfighi

2000 ◽  
Vol 09 (04) ◽  
pp. 481-503 ◽  
Author(s):  
YA-PING SUN ◽  
JASON E. RIGGS ◽  
KEVIN B. HENBEST ◽  
ROBERT B. MARTIN

Optical limiters based on several different classes of nanomaterials are reviewed. The systems under consideration include metal and semiconductor nanoparticles and nanoscale carbon materials. For the latter, the optical limiting properties of carbon nanoparticles, fullerenes, and suspended and solubilized carbon nanotubes are summarized and compared. Mechanistic implications of the available experimental results are discussed in terms of the comparison between nonlinear scattering versus nonlinear absorption as the dominating optical limiting mechanism for different nanomaterials and for different physico-chemical states of a nanomaterial.


Sign in / Sign up

Export Citation Format

Share Document