Synthesize and Characterization of Hollow Hydroxyapatite Nanopowders with Different Morphologies: Role of Cationic and Non-Ionic Surfactants

2013 ◽  
Vol 829 ◽  
pp. 268-273 ◽  
Author(s):  
Amir Seyfoori ◽  
Hamideh Mahmoodzadeh Hosseini ◽  
Abbas Ali Imani Fooladi ◽  
Mohammad Reza Nourani

Today, hydroxyapatite hollow nanopowders have attracted the attention of researchers as a reliable option for drug and protein delivery systems. In this study, nanohydroxyapatite powders with different morphologies were successfully synthesized via wet chemical precipitation method. Elongated rice-shape and semi-spherical nanopowders with hollow structures were synthesized using CTAB and the mixture of cetyltrimethylammonium bromide (CTAB) and polyethylene glycol (PEG) as surfactants respectively. The properties of these nanopowders were charecterized by means of scanning electron microscopy, x-ray diffraction, fourier transform infrared spectroscopy and nitrogen adsorption experiments. The results showed that using CTAB as a surfactant not only can alter the morphology of the HAp nanopowders but also it can have a significant effect on the structure of them, so that by using CTAB and mixture of CTAB and PEG, nanoporous HAp nanopowders were acquired. Moreover, the analysis of nitrogen adsorption showed a higher average surface area for CTAB synthesized HAp in comparison to CTAB/PEG synthesized nanopowder. The amount of live cells adjacent to the HAp suspensions in PBS (50, 100, 200 mg/L) was evaluated by MTT experiment. The results of MTT assay showed the ascending cell proliferation trend for spherical nanopowders by an increment in suspension concentration, while this trend was descending for rice-shape nanopwders.

2011 ◽  
Vol 148-149 ◽  
pp. 900-903
Author(s):  
Li Hua Li ◽  
Yong Jun Gu ◽  
Rui Shi Xie ◽  
Jian Guo Zhu

ZnS:Fe and ZnS:Fe/ZnS core-shell nanocrystals were synthesized by chemical precipitation method. It was found that the ZnS: Fe based nanocrystals possess zinc blende structure. Compared to ZnS: Fe nanocrystals, the intensity of the X-ray diffraction peaks of ZnS: Fe/ZnS nanocrystals reduced and these peaks moved to lower angles. TEM images show that ZnS: Fe based nanocrystals are spheroidal and the average particles size is about 3~4 nm. PL spectra of ZnS: Fe nanocrystals revealed several mission bands, ~406nm, ~444nm, ~416nm, However, PL spectra of ZnS: Fe/ZnS nanocrystals showed several mission bands, ~420nm, ~432nm, ~449nm.


2018 ◽  
Vol 915 ◽  
pp. 98-103 ◽  
Author(s):  
Duygu Candemir ◽  
Filiz Boran

In this study, copper oxide (CuO) nanostructures were successfully prepared by adding EG (ethylene glycol) and PEG (4000, 8000) (polyethylene glycol) via an in-situ chemical precipitation method. EG and PEG (4000, 8000) were effective for changing the particular size of CuO and we examined the effects of drying type such as freeze drying, muffle and horizontal furnace on the size of CuO nanostructure. The structure, morphology and elemental analysis of CuO nanostructure were analyzed by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Also, the CuO nanostructures showed excellent electrical conductivity by the changing of PEG’s molecular weight and drying processes.


2018 ◽  
Vol 915 ◽  
pp. 93-97
Author(s):  
Filiz Boran

In this work, firstly we described the effect of freeze drying on modification of raw diatomite. And then, modified diatomite-leaf-like copper oxide (CuO) nanosheet composite was successfully prepared by surfactant-free in-situ chemical precipitation method. The structure, morphology and elemental analysis of CuO nanosheets and its composite were analyzed by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDAX). Dimensions of leaf-like CuO nanosheets were approximately determined as 160 nm in width, 320 nm in length and 20 nm in thickness. According to the EDAX spectrum, leaf-like CuO nanosheets composed of Cu and O atoms without any impurity and also uniformly covered the entire surface of modified diatomite.


2020 ◽  
Vol 9 (12) ◽  
pp. e30791210996
Author(s):  
Geraldine Nancy Rodriguez Perea ◽  
Mariana Bianchini Silva ◽  
Bruno Xavier Freitas ◽  
Ésoly Madeleine Bento dos Santos ◽  
Luiz Carlos Rolim Lopes ◽  
...  

Non-stoichiometric hydroxyapatite (HAp) presents an additional phase in its structure due to calcium or phosphorus excess, which can influence the material’s mechanical properties, as well as its bioactivity and biodegradability. While stoichiometric HAp, with calcium to phosphorus ratio (Ca/P) of 1.67, has been widely investigated, only a few studies have reported the synthesis of HAp with higher Ca/P ratio. In this work, non-stoichiometric HAp nanoparticles were synthesized using chemical precipitation method followed by a calcination protocol. In order to achieve better process control with chemical precipitation, starch, a natural additive, was applied. Three types of starch were selected for comparison: nonionic starch (NS), soluble starch (SS), and cationic starch (CS). Infrared spectroscopy and chemical analysis results confirmed the non-stoichiometric profile of the synthesized HAp, with a 1.98 Ca/P ratio. X-ray diffraction (XRD) results showed that HAp and calcium oxide (CaO) crystalline phases were obtained and no residual starch was detected. Rietveld refinements confirmed that, for all three types of starch, the content of crystalline HAp was greater than 96.5% and the unit cell volume was not affected. Scanning electron microscopy (SEM) showed agglomeration of particles. Nanoparticle tracking analysis (NTA) results demonstrated that the use of SS produced the smallest particles (approximately 60nm).


2020 ◽  
Vol 1 (1) ◽  
pp. 18-23
Author(s):  
Suresh R ◽  
◽  
Indira Priyadharshini T ◽  
Thirumal Valavan K ◽  
Justin Paul M ◽  
...  

Strontia nanoparticles are successfully prepared by chemical precipitation method. The SrO nanoparticles are characterized by XRD, UV-DRS and I-V analysis. X-ray diffraction peaks reveal the single-phase polycrystalline tetragonal structure with preferential orientation along (2 0 2) direction. Influence of annealing temperature strongly induce the growth of peak which indicates the increased intensity of (202) peak. The heat treatment strongly distresses the growth of triplet peaks (002), (101) and (110) whereas the same augment the growth of (202) and (310). Strontium oxide nanoparticles would allow more light for absorption in UV region due to its rough surface whereas the same would allow moderate light absorption in visible region due to its high packing density. The expansion and contraction of Sr-O bonds leads to a high crystalline nature with its purity at 322 nm. It is proposed that strain and surface defects in SrO nanocrystal take place due to different absorption edge.


2018 ◽  
Vol 60 (5) ◽  
pp. 999
Author(s):  
R. Dilber Pushpitha ◽  
L. Bruno Chandrasekar ◽  
N.M. Segu Sahuban Bathusha ◽  
R. Chandramohan ◽  
M. Karunakaran ◽  
...  

AbstractMn doped ZnO nanorods were prepared by chemical precipitation method. The micro-structural and structural properties of the nanorods were calculated from the X-ray diffraction technique. The formed nanorods was seen in the scanning electron microscopy. The purity of the sample was confirmed by the energy dispersive X-ray analysis (EDX). The optical properties were studied using UV-Vis spectroscopy and photoluminescence. In the photoluminescence spectrum, the peaks due to recombination of free electrons, oxygen vacancy and intrinsic defects were observed. The magnetic properties were studied using vibrating sample magnetometer (VSM) and the paramagnetic nature of the material was confirmed.


2013 ◽  
Vol 678 ◽  
pp. 46-49 ◽  
Author(s):  
Ponnaian Peula Kumari ◽  
Rachel Oommen ◽  
Chinna Kannaiyan Senthil Kumaran ◽  
Mariyappan Thambidurai ◽  
Natarajan Muthukumarasamy ◽  
...  

Fe and Fe2 O3 nanoparticle have been synthesized by chemical precipitation method. The x-ray diffraction studies indicate the formation of Fe and Fe2 O3 nanoparticles with cubic phase and no secondary phase was observed. Surface morphology of Fe and Fe2 O3 has been studied using scanning electron microscopy (SEM). Transmission electron microscopy (TEM) images reveal that Fe and Fe2 O3 nanoparticle have size ranging from 25-41 nm.


2016 ◽  
Vol 230 (11) ◽  
Author(s):  
Shengsong Ge ◽  
Weixue Zhu ◽  
Qian Shao

AbstractStabilized spherical hollow zirconia was fabricated using calcium carbonate as template through a simple precipitation method. The as-prepared products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and nitrogen adsorption–desorption isotherms (BET). Adsorption performance of the as-prepared products toward Congo red (CR) aqueous solutions was tested and discussed. Results show that the prepared hollow ZrO


2012 ◽  
Vol 531-532 ◽  
pp. 250-253 ◽  
Author(s):  
Hong Quan Zhang ◽  
Ming Zhang ◽  
Lu Wei Fu ◽  
Yu Ning Cheng

Zn or Mg ions doped hydroxyapatite (HA) particles were successfully developed by introducing various concentration of Zn or Mg in the starting solution using wet chemical precipitation method and followed a hydrothermal treatment. The products were identified as HA by XRD and FTIR, and the precipitated particles had a rod-like morphology. All the products for Mg and Zn ions concentration in the preparation solution less than 40 mol% were identified as HA. Substitution of Mg and Zn in HA crystal would impair the crystallization of HA and significantly reduce the length of a, c values of HA unit cell, which clearly demonstrated that Mg or Zn ions were structurally incorporated into the apatite crystals, they were not just absorbed on the surface of crystals.


MRS Advances ◽  
2017 ◽  
Vol 2 (64) ◽  
pp. 4025-4030 ◽  
Author(s):  
T. Kryshtab ◽  
H. A. Calderon ◽  
A. Kryvko

ABSTRACTThe microstructure of Ni-Mg-Al mixed oxides obtained by thermal decomposition of hydrotalcite-like compounds synthesized by a co-precipitation method has been studied by using X-ray diffraction (XRD) and atomic resolution transmission electron microscopy (TEM). XRD patterns revealed the formation of NixMg1-xO (x=0÷1), α-Al2O3 and traces of MgAl2O4 and NiAl2O4 phases. The peaks profile analysis indicated a small grain size, microdeformations and partial overlapping of peaks due to phases with different, but similar interplanar spacings. The microdeformations point out the presence of dislocations and the peaks shift associated with the presence of excess vacancies. The use of atomic resolution TEM made it possible to identify the phases, directly observe dislocations and demonstrate the vacancies excess. Atomic resolution TEM is achieved by applying an Exit Wave Reconstruction procedure with 40 low dose images taken at different defocus. The current results suggest that vacancies of metals are predominant in MgO (NiO) crystals and that vacancies of Oxygen are predominant in Al2O3 crystals.


Sign in / Sign up

Export Citation Format

Share Document