Research on the Hardware-in-the-Loop Simulation for High Dynamic SINS/GNSS Integrated Navigation System

2013 ◽  
Vol 846-847 ◽  
pp. 378-382
Author(s):  
Hao Ran Lei ◽  
Shuai Chen ◽  
Yao Wei Chang ◽  
Lei Jie Wang

In the process of developing guided munitions, ground test can only verify the performance of integrated navigation system in low dynamic condition, and its costly and risky to use means of authentication such as flight test and throw experiment. This paper proposes a kind of hardware-in-the-loop simulation (HILS) scheme with tri-axial turntable for verifying the performance of navigation system in high dynamic condition. It respectively uses quaternion method and four-sample rotation vector algorithm as attitude updating algorithms for comparison. On the basis of analyzing the characteristics of some tactical missile and the HILS system, the error sources of integrated navigation system in the simulation with turntable and that without turntable are discussed in detail. The results of HILS show that integrated navigation system is of good performance under high dynamic environment; moreover, for the fiber optic gyroscope (FOG) inertial measurement unit (IMU) which outputs angular rate, quaternion method is better than four-sample rotation vector algorithm.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2013 ◽  
Vol 278-280 ◽  
pp. 1719-1722 ◽  
Author(s):  
Xiao Yu Zhang ◽  
Chun Lei Song

A new scheme of small integrated navigation system based on micro inertial measurement unit (MIMU), global position system (GPS) is presented. The characteristic of these sensors and the structure of system are introduced respectively. The TI high performance floating point DSP TMS320C6713B is used as core processor, which is designed to realize both the data collecting and the navigation calculating. According to the error models of inertial navigation system, an integrated navigation algorithm used Kalman filter is proposed to fuse the information from all of the sensors. The simulation test results show the feasibility of the system design.


2016 ◽  
Vol 70 (2) ◽  
pp. 291-308 ◽  
Author(s):  
Qiang Xiao ◽  
Huimin Fu ◽  
Zhihua Wang ◽  
Yongbo Zhang

Accurate navigation systems are required for future pinpoint Mars landing missions. A radio ranging augmented Inertial Measurement Unit (IMU) integrated navigation system concept is considered for the Mars entry navigation. The uncertain system parameters associated with the Three Degree-Of-Freedom (3-DOF) dynamic model, and the measurement systematic errors are considered. In order to improve entry navigation accuracy, this paper presents the Multiple Model Adaptive Rank Estimation (MMARE) filter of radio beacons/IMU integrated navigation system. 3-DOF simulation results show that the performances of the proposed navigation filter method, 70·39 m estimated altitude error and 15·74 m/s estimated velocity error, fulfill the need of future pinpoint Mars landing missions.


2019 ◽  
Vol 11 (9) ◽  
pp. 1009 ◽  
Author(s):  
Le Chang ◽  
Xiaoji Niu ◽  
Tianyi Liu ◽  
Jian Tang ◽  
Chuang Qian

A Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS)/Light Detection and Ranging (LiDAR)-Simultaneous Localization and Mapping (SLAM) integrated navigation system based on graph optimization is proposed and implemented in this paper. The navigation results are obtained by the information fusion of the GNSS position, Inertial Measurement Unit (IMU) preintegration result and the relative pose from the 3D probability map matching with graph optimizing. The sliding window method was adopted to ensure that the computational load of the graph optimization does not increase with time. Land vehicle tests were conducted, and the results show that the proposed GNSS/INS/LiDAR-SLAM integrated navigation system can effectively improve the navigation positioning accuracy compared to GNSS/INS and other current GNSS/INS/LiDAR methods. During the simulation of one-minute periods of GNSS outages, compared to the GNSS/INS integrated navigation system, the root mean square (RMS) of the position errors in the North and East directions of the proposed navigation system are reduced by approximately 82.2% and 79.6%, respectively, and the position error in the vertical direction and attitude errors are equivalent. Compared to the benchmark method of GNSS/INS/LiDAR-Google Cartographer, the RMS of the position errors in the North, East and vertical directions decrease by approximately 66.2%, 63.1% and 75.1%, respectively, and the RMS of the roll, pitch and yaw errors are reduced by approximately 89.5%, 92.9% and 88.5%, respectively. Furthermore, the relative position error during the GNSS outage periods is reduced to 0.26% of the travel distance for the proposed method. Therefore, the GNSS/INS/LiDAR-SLAM integrated navigation system proposed in this paper can effectively fuse the information of GNSS, IMU and LiDAR and can significantly mitigate the navigation error, especially for cases of GNSS signal attenuation or interruption.


2012 ◽  
Vol 19 (2) ◽  
pp. 71-98 ◽  
Author(s):  
Roberto Sabatini ◽  
Celia Bartel ◽  
Anish Kaharkar ◽  
Tesheen Shaid ◽  
Leopoldo Rodriguez ◽  
...  

Abstract In this paper we present a new low-cost navigation system designed for small size Unmanned Aerial Vehicles (UAVs) based on Vision-Based Navigation (VBN) and other avionics sensors. The main objective of our research was to design a compact, light and relatively inexpensive system capable of providing the Required Navigation Performance (RNP) in all phases of flight of a small UAV, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN were compared and the Appearance-Based Approach (ABA) was selected for implementation. Feature extraction and optical flow techniques were employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we addressed the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, as well as the aiding from Aircraft Dynamics Models (ADMs). In particular, by employing these sensors/models, we aimed to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) was developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UAV platform in real-time. Two different integrated navigation system architectures were implemented. The first used VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also included the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes was accomplished in a significant portion of the AEROSONDE UAV operational flight envelope and performing a variety of representative manoeuvres (i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation system architecture (VBN/IMU/GPS) showed that the integrated system can reach position, velocity and attitude accuracies compatible with CAT-II precision approach requirements. Simulation of the second system architecture (VBN/IMU/GPS/ADM) also showed promising results since the achieved attitude accuracy was higher using the ADM/VBS/IMU than using VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there was a need for frequent re-initialisation of the ADM data module, which was strongly dependent on the UAV flight dynamics and the specific manoeuvring transitions performed


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1079 ◽  
Author(s):  
Di Liu ◽  
Hengjun Wang ◽  
Qingyuan Xia ◽  
Changhui Jiang

GNSS (global navigation satellite system) and SINS (strap-down inertial navigation system) integrated navigation systems have been the apparatus for providing reliable and stable position and velocity information (PV). Commonly, there are two solutions to improve the GNSS/SINS integration navigation system accuracy, i.e., employing GNSS with higher position accuracy in the integration system or utilizing the high-grade inertial measurement unit (IMU) to construct the integration system. However, technologies such as RTK (real-time kinematic) and PPP (precise point positioning) that improve GNSS positioning accuracy have higher costs and they cannot work under high dynamic environments. Also, an IMU with high accuracy will lead to a higher cost and larger volume, therefore, a low-cost method to enhance the GNSS/SINS integration accuracy is of great significance. In this paper, multiple receivers based on the GNSS/SINS integrated navigation system are proposed with the aim of providing more precise PV information. Since the chip-scale receivers are cheap, the deployment of multiple receivers in the GNSS/SINS integration will not significantly increase the cost. In addition, two different filtering methods with central and cascaded structure are employed to process the multiple receivers and SINS integration. In the centralized integration filter method, measurements from multiple receivers are directly processed to estimate the SINS errors state vectors. However, the computation load increases heavily due to the rising dimension of the measurement vector. Therefore, a cascaded integration filter structure is also employed to distribute the processing of the multiple receiver and SINS integration. In the cascaded processing method, each receiver is regarded as an individual “sensor”, and a standard federated Kalman filter (FKF) is implemented to obtain an optimal estimation of the navigation solutions. In this paper, a simulation and a field tests are carried out to assess the influence of the number of receivers on the PV accuracy. A detailed analysis of these position and velocity results is presented and the improvements in the PV accuracy demonstrate the effectiveness of the proposed method.


2017 ◽  
Vol 24 (s3) ◽  
pp. 110-115
Author(s):  
Changsong Yang ◽  
Qi Wang

Abstract Large errors of low-cost MEMS inertial measurement unit (MIMU) lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS). This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.


Sign in / Sign up

Export Citation Format

Share Document