Application and Development of Materials for ‘Green’ Concrete

2013 ◽  
Vol 848 ◽  
pp. 135-138
Author(s):  
Jia Zi Shi ◽  
Xing Dang

Concrete is the most commonly used construction material in the world over the past decades. But the increase in concrete production leads to an increase in greenhouse gases emission and environmental damage. With the current focus on sustainability, it is necessary to evaluate concretes environmental impact and develop new materials for green concrete. Green recycled aggregates and mineral admixtures are important component materials for green concrete. In this paper, the development of green concrete industry is introduced, and the application of materials for green concrete such as green recycled aggregates and mineral admixtures are discussed.

2011 ◽  
Vol 55 (11) ◽  
pp. 1060-1069 ◽  
Author(s):  
Michael Henry ◽  
German Pardo ◽  
Tsugio Nishimura ◽  
Yoshitaka Kato

2018 ◽  
Vol 4 (8) ◽  
pp. 1760 ◽  
Author(s):  
Rasyiid Lathiif Amhudo ◽  
Tavio Tavio ◽  
I Gusti Putu Raka

Concrete is the most widely used construction material in the world. Along with the increasing economic needs in the development of construction, precast technology has become a primary solution that leads to the industrialization. The use of precast concrete system offers several advantages, such as rapid erection, higher product quality, lower project cost, better sustainability, and improved occupational health and safety. In general, there are two casting methods used in concrete placement, namely wet- and dry-castings. The dry-cast concrete has also been used for its advantages particularly in precast concrete industries, e.g. its rapid hardening time for fast mold removal (it significantly increases the plant productivity). The use of Portland Pozzolana Cement (PPC) as a replacement to Ordinary Portland Cement (OPC) has become increasingly popular for the past decade. Hence, its application in dry-cast method needs to be further investigated for its mechanical properties such as its compressive and splitting tensile strengths. An experimental work was carried out to examine the properties of dry-cast concrete using both types of cements (PPC and OPC). The development of its compressive strength was also monitored at 1, 7, 14, 21, 28, and 56 days of age. The splitting test was conducted to describe the tensile strength of dry-cast concrete. The observation of crack and failure behaviour of all concrete specimens were also carried out.


2019 ◽  
Vol 9 (3) ◽  
pp. 4298-4300
Author(s):  
T. M. Shah ◽  
A. Kumar ◽  
S. N. R. Shah ◽  
A. A. Jhatial ◽  
M. H. Janwery

Masonry is the oldest form of construction in the world [1]. Research shows that it is the most widely used construction material in Pakistan and it has remained as such for more than the past hundred years. The majority of buildings in Pakistan are load-bearing burnt-brick masonry structures. Unfortunately, the brick masonry structures in Pakistan are not designed with respect to any regulatory code, because none exist. Consequently, these structures are not constructed according to a safe design and thus become hazardous and often face considerable damage and sometimes prove to be fatal. This study aims to study the behavior of local brick masonry under normal, shear and thermally challenging conditions and to model its behavior by relating the crushing strength (f’m) to the height-to-thickness ratio and temperature.


2021 ◽  
Author(s):  
Nadjla Fellahi

The beginning of globalization according to Karl Marx’s anticipation when the Bourgeoisie class were expending their products to reach the whole globe starting from the mid of the 19th century, other scholars assume that globalization can be seen as a thread run through all the past humanities starting from our ancestors and their migration across the world which makes no fixed beginning nor an expected end of it. Globalization changed the relations between producers and consumers, also it broken various links between labor with family, daily life, as well as national attachments. The objective of this article is to discuss the progress of the globalization in the field of architecture, its signs, and its processes. The article also demonstrates how the aspect of localities has been affected by the global forces which will be done through two case studies: Algiers and Istanbul. The results expose that Globalization approach can be defined from various perspectives, but what common in these viewpoints is the "Mobility" of thoughts, objects, people, and ideas between regions, nations, and continents. The stereotype aspect of global cities which characterized by tall-sized buildings, the new materials, the sophisticated facades, new technologies etc., has impacted on the priorities of people and authorities of various countries like Algeria, and Turkey.


2019 ◽  
Vol 11 (15) ◽  
pp. 4083 ◽  
Author(s):  
Svetlana Pushkar

The results of life-cycle assessments (LCAs) of concrete are highly dependent on the concrete design method. In this study, LCAs were conducted to evaluate the environmental impacts of the replacement of sand with furnace bottom-ash (FBA) in concrete. In the FBA-based concretes, sand was replaced with FBA at proportions of 0, 30, 50, 70, and 100 wt%. Two design methods were studied: (i) concrete with fixed slump ranges of 0–10 mm (CON-fix-SLUMP-0-10) and 30–60 mm (CON-fix-SLUMP-30-60); and (ii) concrete with fixed water/cement (W/C) ratios of 0.45 (CON-fix-W/C-0.45) and 0.55 (CON-fix-W/C-0.55). The ReCiPe2016 midpoint and single-score (six methodological options) methods were used to compare the environmental damage caused by the FBA-based concretes. A two-stage nested (hierarchical) analysis of variance (ANOVA) was used to simultaneously evaluate the results of six ReCiPe2016 methodologies. The ReCiPe2016 results indicate that replacing sand with FBA decreased the environmental impact of the concretes with fixed slump ranges and increased the environmental impact of the concretes with fixed W/C ratios. Therefore, using FBA as a partial sand replacement in concrete production is of debatable utility, as its impact highly depends on the concrete design method used.


2013 ◽  
Vol 634-638 ◽  
pp. 2672-2675
Author(s):  
Zhen Rong Lin ◽  
Tao Zhang ◽  
Yun Yun Xu

As the world's largest building materials production, the mechanical properties of concrete prominent and construction is simple, inexpensive features. Concrete production and construction sectors also exists a very serious problem of environmental pollution, people have to consider how to enhance the environmental protection of concrete, namely, the production and use of "green concrete". Since the past one-sided pursuit of high strength concrete, while ignoring the the durability issues brought a series of questions, allowing people to put forward the concept of a high-performance concrete. The paper by exploring the current development of high-performance green concrete, summary of the proposed method to achieve green high performance concrete.


2021 ◽  
Vol 1 (2) ◽  
pp. 26-34
Author(s):  
Gökhan KAPLAN

The greatest frequently applied construction substantial in the construction sector is concrete. Natural resources are mostly used in concrete production. While environmental resources are being consumed, concrete environmental pollution increases during urban transformation or reconstruction. In sustainable life, environmental damage caused by construction demolition wastes necessitates the use of recovered aggregate. Recycled aggregate is a term used to depict squashed solid, mortar, blocks or black-top from development trash that is reused in other structure ventures. Reused total is delivered by pounding annihilated waste to recover the total. For as far back as not many decades the accessibility of Construction and demolition waste has expanded so a lot of that the solid business has started using it thusly decreasing the number of totals. The goal is to examine the physical properties, (grain size distribution, density and water absorption) and mechanical properties, (for example, compressive strength, flexural strength, modulus of elasticity and splitting tensile strength) and durability properties, (for example, sulfate resistance, freezing and thawing resistance, acid resistance, high temperature effect and abrasion resistance) of recycled aggregate. It is seen that the mechanical and durability conduct of recycled aggregate concrete is optional to that of standard concrete yet with the utilizing various admixture and unique blending approach, required properties can be accomplished.


Author(s):  
Vimalkumar N Patel ◽  
Gaurav B Jagad ◽  
Damyanti Govindbhai Badagha ◽  
Chetankumar D Modhera

Author(s):  
S. P. Khedekar

Concrete is the premier construction material around the world and is most widely used in all types of construction works, including infrastructure, low and high-rise buildings, and domestic developments. It is a man-made product, essentially consisting of a mixture of cement, aggregates, water and admixture(s). Inert granular materials such as sand, crushed stone or gravel form the major part of the aggregates. Traditionally aggregates have been readily available at economic prices and of qualities to suit all purposes. But the continued extensive extraction use of aggregates from natural resources has been questioned because of the depletion of quality primary aggregates and greater awareness of environmental protection. In light of this, the non-availability of natural resources to future generations has also been realized. Different alternative waste materials and industrial by products such as fly ash, bottom ash, recycled aggregates, foundry sand, China clay sand, crumb rubber, glass were replaced with natural aggregate and investigated properties of the concretes. Apart from above mentioned waste materials and industrial by products, few studies identified that coconut shells, the agricultural by product can also be used as aggregate in concrete. According to a report, coconut is grown in more than 86 countries worldwide, with a total production of 54 billion nuts per annum. India occupies the premier position in the world with an annual production of 13 billion nuts, followed by Indonesia and the Philippines.


Sign in / Sign up

Export Citation Format

Share Document