scholarly journals The Effect of Different Concrete Designs on the Life-Cycle Assessment of the Environmental Impacts of Concretes Containing Furnace Bottom-Ash Instead of Sand

2019 ◽  
Vol 11 (15) ◽  
pp. 4083 ◽  
Author(s):  
Svetlana Pushkar

The results of life-cycle assessments (LCAs) of concrete are highly dependent on the concrete design method. In this study, LCAs were conducted to evaluate the environmental impacts of the replacement of sand with furnace bottom-ash (FBA) in concrete. In the FBA-based concretes, sand was replaced with FBA at proportions of 0, 30, 50, 70, and 100 wt%. Two design methods were studied: (i) concrete with fixed slump ranges of 0–10 mm (CON-fix-SLUMP-0-10) and 30–60 mm (CON-fix-SLUMP-30-60); and (ii) concrete with fixed water/cement (W/C) ratios of 0.45 (CON-fix-W/C-0.45) and 0.55 (CON-fix-W/C-0.55). The ReCiPe2016 midpoint and single-score (six methodological options) methods were used to compare the environmental damage caused by the FBA-based concretes. A two-stage nested (hierarchical) analysis of variance (ANOVA) was used to simultaneously evaluate the results of six ReCiPe2016 methodologies. The ReCiPe2016 results indicate that replacing sand with FBA decreased the environmental impact of the concretes with fixed slump ranges and increased the environmental impact of the concretes with fixed W/C ratios. Therefore, using FBA as a partial sand replacement in concrete production is of debatable utility, as its impact highly depends on the concrete design method used.

2019 ◽  
Vol 9 (17) ◽  
pp. 3620 ◽  
Author(s):  
Svetlana Pushkar

Life-cycle assessments (LCAs) were conducted to evaluate the replacement of sand with coal bottom ash (CBA) in concrete. CBA is a byproduct of coal-fueled electricity production. Sand was replaced with CBA at proportions of 0, 25, 50, 75, and 100 wt.%, and the resultant concretes were denoted as CBA0, CBA25, CBA50, CBA75, and CBA100, respectively. Two concrete mixture design methods (that resulted in different component qualities of concrete mixtures) were used: (i) Mixture with a fixed slump (MIX-fixed-SLUMP) and (ii) mixture with a fixed water/cement ratio (MIX-fixed-W/C). The ReCiPe2016 midpoint and single score (six methodological options) methods were followed to compare the environmental damage caused by the CBA-based concretes. The ReCiPe2016 results showed that replacing sand with CBA was environmentally (i) beneficial with the MIX-fixed-SLUMP design and (ii) harmful with the MIX-fixed-W/C design. Therefore, using CBA as a partial sand replacement in concrete production is a controversial issue as it highly depends on the concrete mixture design method.


2020 ◽  
Vol 10 (21) ◽  
pp. 7503
Author(s):  
Seungjun Roh ◽  
Rakhyun Kim ◽  
Won-Jun Park ◽  
Hoki Ban

This study aims to compare the potential environmental impact of the manufacture and production of recycled and by-product aggregates based on a life cycle assessment and to evaluate the environmental impact and cost when they are used as aggregates in concrete. To this end, the six potential environmental impacts (i.e., abiotic depletion potential, global warming potential, ozone-layer depletion potential, acidification potential, photochemical ozone creation potential, and eutrophication potential) of the manufacture and production of natural sand, natural gravel, recycled aggregate, slag aggregate, bottom ash aggregate, and waste glass aggregate were compared using information from life cycle inventory databases. Additionally, the environmental impacts and cost were evaluated when these aggregates were used to replace 30% of the fine and coarse aggregates in concrete with a design strength of 24 MPa. The environmental impact of concrete that incorporated slag aggregate as the fine aggregates or bottom ash aggregate as the coarse aggregates were lower than that of concrete that incorporated natural aggregate. However, concrete that incorporated bottom ash aggregate as the fine aggregates demonstrated relatively high environmental impacts. Based on these environmental impacts, the environmental cost was found to range from 5.88 to 8.79 USD/m3.


2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


2016 ◽  
Vol 106 (03) ◽  
pp. 136-140
Author(s):  
R. Miehe ◽  
M. Wiedenmann ◽  
T. Prof. Bauernhansl

Die Ökobilanz hat sich als Instrument zur Bewertung der Umweltauswirkungen von Produkten und Prozessen durchgesetzt. Dennoch stellt ihre Durchführung Nutzer immer wieder vor Herausforderungen. Der Fachartikel präsentiert einen Ansatz für eine vergleichende Betrachtung der ökologischen Auswirkungen des unternehmerischen Handelns auf Basis der jeweiligen Unternehmens- und Branchenumsätze. Der Umsatz-Nachhaltigkeitsindex soll als Konzept für ein Benchmark für Unternehmen einer Branche dienen.   Life Cycle Assessment has prevailed as an instrument to evaluate the environmental impact of products and processes. Its execution, however, poses a challenge to operators. In this paper, we present an approach for a comparative examination of environmental impacts of industrial behavior based on the turnover of companies and their equivalent sectors. The Turnover-Sustainability-Index serves as a benchmark for companies within a sector.


Author(s):  
Alma Delia Delia Román Gutiérrez ◽  
Juan Hernandez Avila ◽  
Antonia Karina Vargas M. ◽  
Eduardo Cerecedo Saenz ◽  
Eleazar Salinas-Rodríguez

Usually in the manufacture of beer by fermentation of barley, in both industrialized and developing countries significant amounts of organic solid waste are produced from barley straw. These possibly have an impact on the carbon footprint with an effect on global warming. According to this, it is important to reduce environmental impact of these solid residues, and an adequate way is the recycling using them as raw material for the elaboration of handmade paper. Therefore, it is required to manage this type of waste by analyzing the environmental impact, and thus be able to identify sustainable practices for the treatment of this food waste, evaluating its life cycle, which is a useful methodology to estimate said environmental impacts. It is because of this work shows the main results obtained using the life cycle analysis (LCA) methodology, to evaluate the possible environmental impacts during the waste treatment of a brewery located in the state of Hidalgo, Mexico. The residues evaluated were barley straw, malt residues and spent grain, and at the end, barley straw was selected to determine in detail its environmental impact and its reuse, the sheets analyzed presented a grammage that varies from 66 g/m2 and 143 g/m2, resistance to burst was 117 to 145 kpa, with a crystallinity of 34.4% to 37.1%.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


Author(s):  
Roberto A. Ortega ◽  
Uma-Shankar Kalyan-Seshu ◽  
Bert Bras

Abstract In this paper, a decision support approach for designing a family of environmentally benign products for a ranged set of customer requirements is presented. More specifically, we incorporate environmental issues in order to minimize the environmental impact of products without sacrificing their performance characteristics and keeping competitive prices in comparison to existing products. The example problem consists of the design of a family of environmentally benign oil filters based on a variety of oil flow rate ranges. Environmental issues are represented by Life Cycle Assessments and comparisons of the existing alternatives based on their environmental impact. Emphasis is placed on highlighting the trade-off analysis for including environmental considerations in the design of a family of products and not on the results of the problem, per se.


2021 ◽  
Author(s):  
András Polgár ◽  
Karolina Horváth ◽  
Imre Mészáros ◽  
Adrienn Horváth ◽  
András Bidló ◽  
...  

<p>Crop production is applied on about half of Hungary’s land area, which amounts to approximately 4.5 million hectares. The agricultural activity has significant environmental impacts.</p><p>Our work aims the time series investigation of the impacts of large-scale agricultural cultivation<strong> </strong>on environment and primarily on climate change in<strong> </strong>the test area by applying environmental life cycle assessment (LCA) method.</p><p>The investigated area of Lajta Project can be found in the triangle formed by the settlements Mosonszolnok, Jánossomorja and Várbalog, in the north-western corner of Hungary, in Győr-Moson-Sopron county. The area has intense agri-environment characteristics, almost entirely lacking of grasslands and meadows.</p><p>We were looking for the answer to the question “To what extent does agricultural activity on this area impact the environment and how can it contribute to climate change during a given period?” The selection of the plants included in the analysis was justified by their significant growing area. We analysed the cultivation data of 5 crops: canola, winter barley, winter wheat, green maize and maize. Material flows of arable crop production technologies were defined in time series by the agricultural parcel register data. These covered the size of the area actually cultivated, the operational processes, records on seeds, fertilizer and pesticide use and harvest data by parcels. The examined environmental inventory database contained also the fuel consumption and lubricating oil usage of machine operations, and the water usage of chemical utilization.</p><p>In the life cycle modelling of cultivation, we examined 13 years of maize, 20 years of green maize, 20 years of winter barley, 18 years of winter wheat and 15 years of canola data calculated on 1 ha unit using GaBi life cycle analysis software.</p><p>In addition, we also calculated by an average cultivation model for all cultivated plants with reference data to 1 ha and 1 year period.</p><p>We applied methods and models in our life cycle impact assessment. According to the values of the impact categories, we set up the following increasing environmental ranking of plant cultivation: (1) canola has minimum environmental impacts followed by (2) green maize and (3) maize with slightly higher values, (4) winter barley has 6 times higher values preceded by (5) winter wheat with a slight difference. The previous environmental ranking of the specific cultivated plants’ contribution was also confirmed as regards the overall environmental impact: canola (1.0%) – green maize (4.9%) – maize (7.1%) – winter barley (43.1%) – winter wheat (44.0%).</p><p>Environmental impact category indicator results cumulated to total cultivation periods and total crop growing areas (quantitative approach) display the specific environmental footprints by crops. Increasing environmental ranking of environmental impacts resulted from cultivating the sample area is the following: (1) canola – (2) maize – (3) green maize – (4) winter barley – (5) winter wheat. The slight difference resulted in the rankings in quantitative approach according to the rankings of territorial approach on the investigated area is due to the diversity of cultivation time factor and the crop-growing parameter of the specific crops.</p><p>Acknowledgement: Our research was supported by the „Lajta-Project”.</p>


2018 ◽  
Vol 74 ◽  
pp. 11003
Author(s):  
Andreas Pramudianto

Basically each product or service has its own life cycle. Life Cycle Analysis Method can be used to assess the impact of an activity both production and service activities. Environmental Impact Assessment (EIA) or Analisis Mengenai Dampak Lingkungan (AMDAL) is one of the activities that must be fulfilled in order to obtain an environmental permit. EIA activities have a life cycle process that needs to be known and understood so that environmental permits can be obtained. Therefore this study aims to find out the use of the LCA method in EIA procedures. In addition, with the LCA method, EIA activities are expected to be well studied according to the function of this service. LCA can provide to reduce the least impact from environmental damage. This research will be useful for the development of environmental science, especially related to the study of environmental impacts, especially EIA. It is expected that the results of the study will provide a complete picture of the relevance of the LCA method with EIA and the benefits that can be taken. The results of this study will be an important recommendation for decision makers regarding the importance of EIA in development, especially sustainable development through the method used, namely LCA.


Sign in / Sign up

Export Citation Format

Share Document