Development of Special Users' Energy Saving Potential New Intelligent Diagnosis Detector Based on DSP2812 Technology

2013 ◽  
Vol 860-863 ◽  
pp. 667-675
Author(s):  
Le Feng Cheng ◽  
Jian Fu Peng ◽  
Tao Yu

In order to solve the problem that special users energy saving potential is unable to diagnose automotive online, a new automatic diagnosis of energy saving potential method based on online DSP was proposed. This proposed method, together with a variety of techniques like modern power electronics, digital signal processing, high precision and fast sampling, high capacity storage, human-machine interaction technologies and so on, was applied to develop a corresponding special users energy saving potential diagnosis detector. The hardware design and DSP energy saving analysis software design of the detector were described firstly, and the results of field test were presented to demonstrate its feasibility. It is shown that, its advantages include easy-to-use, low cost, highly reliable, strong intelligence and easy to promote, thus can effectively improve the efficiency of electrical energy audit and the degree of information and automation.

2021 ◽  
Vol 8 ◽  
Author(s):  
Catherine Baxevanou ◽  
Dimitrios Fidaros ◽  
Ilias Giannenas ◽  
Eleftherios Bonos ◽  
Ioannis Skoufos

Broiler facilities consume a lot of energy resulting in natural source depletion and greater greenhouse gas emissions. A way to assess the energy performance of a broiler facility is through an energy audit. In the present paper, an energy protocol for an energy audit is presented covering both phases of data collection and data elaboration. The operational rating phase is analytically and extendedly described while a complete mathematical model is proposed for the asset rating phase. The developed energy audit procedure was applied to poultry chambers located in lowland and mountainous areas of Epirus Greece for chambers of various sizes and technology levels. The energy intensity indices varied from 46 to 89 kWh/m2 of chamber area 0.25–0.48 kWh/kg of produced meat or 0.36–1.3 kWh/bird depending on the chamber technology level (insulation, automation, etc.) and the location where the unit was installed. The biggest energy consumer was heating followed by energy consumption for ventilation and cooling. An advanced technology level can improve energy performance by ~ 27%−31%. Proper insulation (4–7 cm) can offer a reduction of thermal energy consumption between 10 and 35%. In adequately insulated chambers, the basic heat losses are due to ventilation. Further energy savings can be achieved with more precise ventilation control. Automation can offer additional electrical energy saving for cooling and ventilation (15–20%). Energy-efficient lights can offer energy saving up to 5%. The use of photovoltaic (PV) technology is suggested mainly in areas where net-metering holds. The use of wind turbines is feasible only when adequate wind potential is available. Solar thermal energy is recommended in combination with a heat pump if the unit's heating and cooling systems use hot/cold water or air. Finally, the local production of biogas with anaerobic fermentation for producing thermal or electrical energy, or cogenerating both, is a choice that should be studied individually for each farm.


Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi ◽  
Chiara Santarelli ◽  
Michaela Servi ◽  
...  

Low-cost RGB-D cameras are increasingly used in several research fields including human-machine interaction, safety, robotics, biomedical engineering and even Reverse Engineering applications. Among the plethora of commercial devices, the Intel RealSense cameras proved to be among the best suitable devices, providing a good compromise between cost, ease of use, compactness and precision. Released on the market in January 2018, the new Intel model RealSense D415 has a wide acquisition range (i.e. ~160-10000 mm) and a narrow field of view to capture objects in rapid motion. Given the unexplored potential of this new device, especially when used as a 3D scanner, the present work aims to characterize and to provide metrological considerations on the RealSense D415. In particular, tests are carried out to assess the device performances in the near range (i.e. 100-1000 mm). Characterization is performed by integrating the guidelines of the existing standard (i.e. the German VDI/VDE 2634 part 2 normative) with a number of literature-based strategies. Performance analysis is finally compared against latest close-range sensors, thus providing a useful guidance for researchers and practitioners aiming to use RGB-D cameras in Reverse Engineering applications.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 489 ◽  
Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi ◽  
Chiara Santarelli ◽  
Michaela Servi ◽  
...  

Low-cost RGB-D cameras are increasingly being used in several research fields, including human–machine interaction, safety, robotics, biomedical engineering and even reverse engineering applications. Among the plethora of commercial devices, the Intel RealSense cameras have proven to be among the most suitable devices, providing a good compromise between cost, ease of use, compactness and precision. Released on the market in January 2018, the new Intel model RealSense D415 has a wide acquisition range (i.e., ~160–10,000 mm) and a narrow field of view to capture objects in rapid motion. Given the unexplored potential of this new device, especially when used as a 3D scanner, the present work aims to characterize and to provide metrological considerations for the RealSense D415. In particular, tests are carried out to assess the device performance in the near range (i.e., 100–1000 mm). Characterization is performed by integrating the guidelines of the existing standard (i.e., the German VDI/VDE 2634 Part 2) with a number of literature-based strategies. Performance analysis is finally compared against the latest close-range sensors, thus providing a useful guidance for researchers and practitioners aiming to use RGB-D cameras in reverse engineering applications.


2013 ◽  
Vol 291-294 ◽  
pp. 1044-1049 ◽  
Author(s):  
Wen Long Jing ◽  
Mohamed Nayel

A building energy audit was developed through a case study on the science building at Xi'an Jiaotong-Liverpool University (XJTLU). The annual energy consumption of the building was surveyed over a two year period. The building energy consumption characteristics were displayed and the corresponding energy saving potential was analyzed. Additionally, an energy saving methods is proposed based on the characteristics of the target building.


2020 ◽  
Vol 12 (1) ◽  
pp. 11-21
Author(s):  
Fahrizal Tunjung Kresnadi

Knowing the level of intensity of energy consumption (IKE) in the FKIP Untirta building using the energy audit method for achieving energy efficiency. The data used in data collection in the form of electricity usage data, building area data and observations made by researchers. Analysis of the data used in this study is to use the formula of energy consumption intensity. The results showed the IKE value of the CB FKIP Untirta building was 254.5 kWh/m2. With these results, it can be seen that the IKE value in the CB FKIP Untirta building is still inefficient. This is based on ASEAN-USAID parameters which range at 240 kWh/m2. Based on electrical energy consumption in the CB FKIP Untirta building there is an opportunity for energy saving or energy saving solutions that are replacing TL lamps with Led lights or by replacing TL lamps that are smaller watts and in terms of air conditioning or air conditioning load replacing R32 refrigerant with R32 refrigerant mixture and The R290 has proven to be quite efficient in terms of savings and energy efficiency. And the duration of use of electrical energy.


Author(s):  
Косухин ◽  
Andrey Kosukhin ◽  
Косухин ◽  
Mikhail Kosukhin ◽  
Семак ◽  
...  

There were presented the findings of the research in energy saving and energy efficiency of public and residential buildings with the purpose of evaluating the energy saving potential on the basis of energy audit. There was demonstrated the nature of energy consumption and the evaluation figures of energy saving in state-financed sphere and housing sector of the country. On the basis of research and calculations of various specialists it was determined, that the highest potential of energy efficiency improvement belongs to the housing funds of the country. It was pointed out that capital repairs and reconstruction of the existing housing funds are the necessary condition of implementing the energy saving measures. The investment issues, their types and their attractiveness for energy saving measures and improving the energy efficiency are reflected.


2019 ◽  
Vol 28 (1) ◽  
pp. 115-132 ◽  
Author(s):  
Mohamed K. Shahin ◽  
Alaa Tharwat ◽  
Tarek Gaber ◽  
Aboul Ella Hassanien

Abstract Recent research studies showed that brain-controlled systems/devices are breakthrough technology. Such devices can provide disabled people with the power to control the movement of the wheelchair using different signals (e.g. EEG signals, head movements, and facial expressions). With this technology, disabled people can remotely steer a wheelchair, a computer, or a tablet. This paper introduces a simple, low-cost human-machine interface system to help chaired people to control their wheelchair using several control sources. To achieve this paper’s aim, a laptop was installed on a wheelchair in front of the sitting person, and the 14-electrode Emotiv EPOC headset was used to collect the person’s head impressions from the skull surface. The superficially picked-up signals, containing the brain thoughts, head gestures, and facial emotions, were electrically encoded and then wirelessly sent to a personal computer to be interpreted and then translated into useful control instructions. Using these signals, two wheelchair control modes were proposed: automatic (using single-modal and multimodal approaches) and manual control. The automatic mode controller was accomplished using a software controller (Arduino), whereas a simple hardware controller was used for the manual mode. The proposed solution was designed using wheelchair, Emotiv EPOC EEG headset, Arduino microcontroller, and Processing language. It was then tested by totally chaired volunteers under different levels of trajectories. The results showed that the person’s thoughts can be used to seamlessly control his/her wheelchair and the proposed system can be configured to suit many levels and degrees of disability.


2015 ◽  
Vol 713-715 ◽  
pp. 1086-1089
Author(s):  
Pei Dong Du ◽  
Yong Jun Han ◽  
Fu Chao Liu

Colleges and universities as the important structure of social organization, as well as the large energy structure consumption, it is necessary to analyze the energy consumption characteristics and factors, evaluate the energy-saving potential of college, realize the situation of the energy management system, and then, the energy used in college and economic burden can be reduced based on theory of improving energy management by strengthening energy control management. In this paper, the electrical energy potential saving of consumption in college has been analyzed and evaluated based on data envelopment analysis (DEA) model method. The LonWorks in fieldbus is used in technology field. Finally, the management measures and energy saving methods are proposed.


Sign in / Sign up

Export Citation Format

Share Document