Quantitative Phase Analyses of a Slag Using X-Ray Powder Diffraction

2014 ◽  
Vol 881-883 ◽  
pp. 1241-1244
Author(s):  
Wei Jin Zeng ◽  
Chao Zeng ◽  
Wei He

The quantitative phase analyses of a slag have been successfully carried out by using both of the full-profile Rietveld and RIR methods from X-ray powder diffraction data. The qualitative phase analysis indicates that the slag contains mayenite (CaO)12(Al2O3)7, olivine Ca2(SiO4), gehlenite Ca2Al (AlSiO7), lemite Ca2(SiO4) and hibonite CaO(Al2O3)6. The quantitative analysis from Rietveld refinement shows that the weight concentrations of mayenite, olivine, gehlenite, lemite and hibonite for the slag are 48.8(4) wt.%, 32.2(5) wt.%, 11.0(9) wt.%, 6.2(1.1) wt.% and 1.8 (1.2) wt.%, respectively. The quantitative phase analysis results obtained by Rietveld method are more precise then those by RIR method.

Crystals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27 ◽  
Author(s):  
Stanko Popović

X-ray powder diffraction is an ideal technique for the quantitative analysis of a multiphase sample. The intensities of diffraction lines of a phase in a multiphase sample are proportional to the phase fraction and the quantitative analysis can be obtained if the correction for the absorption of X-rays in the sample is performed. Simple procedures of quantitative X-ray diffraction phase analysis of a multiphase sample are presented. The matrix-flushing method, with the application of reference intensities, yields the relationship between the intensity and phase fraction free from the absorption effect, thus, shunting calibration curves or internal standard procedures. Special attention is paid to the doping methods: (i) simultaneous determination of the fractions of several phases using a single doping and (ii) determination of the fraction of the dominant phase. The conditions to minimize systematic errors are discussed. The problem of overlapping of diffraction lines can be overcome by combining the doping method (i) and the individual profile fitting method, thus performing the quantitative phase analysis without the reference to structural models of particular phases. Recent suggestions in quantitative phase analysis are quoted, e.g., in study of the decomposition of supersaturated solid solutions—intermetallic alloys. Round Robin on Quantitative Phase Analysis, organized by the IUCr Commission on Powder Diffraction, is discussed shortly. The doping methods have been applied in various studies, e.g., phase transitions in titanium dioxide, biomineralization processes, and phases in intermetallic oxide systems and intermetallic alloys.


2006 ◽  
Vol 9 (4) ◽  
pp. 369-374 ◽  
Author(s):  
Terezinha Ferreira de Oliveira ◽  
Roberto Ribeiro de Avillez ◽  
Eugenio Kahn Epprecht ◽  
Joaquim Carlos Barbosa Queiroz

2007 ◽  
Vol 22 (4) ◽  
pp. 300-302 ◽  
Author(s):  
Liangqin Nong ◽  
Xiying Yang ◽  
Lingmin Zeng ◽  
Jingping Liu

X-ray powder diffraction technique and the Rietveld refinement method have been used successfully for the qualitative and quantitative analyses of Pingguo bauxite from Guangxi, China. Qualitative phase analysis shows that the Pingguo bauxite contains diaspore (AlOOH), hematite (Fe2O3), goethite (FeOOH), anatase (TiO2), and kaolinite (Al2(Si2O5)(OH)4). Quantitative Rietveld refinement shows that the weight concentrations of diaspore, goethite, hematite, anatase, and kaolinite for the Pingguo bauxite are 71.9(4)%, 7.0(8)%, 11.3(7)%, 6.5(6)%, and 3.3(9)%, respectively.


2017 ◽  
Vol 898 ◽  
pp. 2054-2059
Author(s):  
Yan Ling Gan ◽  
Su Ping Cui ◽  
Ya Li Wang ◽  
Hong Xia Guo

For cement-matrix materials, the microstructure plays a vital important role in the research. Recently, quantitative phase analysis of cementitious materials can be performed using the Rietveld method by fitting the calculated X-ray diffraction (XRD) profile with the observed one. The aim of this paper is to further perform the quantitative analysis by the Rietveld method and discuss the influence of testing factors on the Rietveld quantitative phase analysis. The factors included the collection range of pattern, step size and the scan time of per step. In this study, the chemical composition of the samples was determined by X-ray fluorescence (XRF) spectrometry. And their phase composition was calculated by X-ray powder diffraction and Rietveld analysis. The results showed that the collection range of pattern depended on the tested materials , and the scanning range should include the main diffraction peak of the sample. Smaller step size and longer scan time of each step made the fitting factor smaller, also the calculated pattern coincided with the measured pattern, better enhance the precision of the analyses.


Minerals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 894
Author(s):  
Yana Tzvetanova ◽  
Ognyan Petrov ◽  
Thomas Kerestedjian ◽  
Mihail Tarassov

The Rietveld method using X-ray powder diffraction data was applied to selected skarn samples for quantitative determination of the present minerals. The specimens include garnet, clinopyroxene–garnet, plagioclase–clinopyroxene–wollastonite–garnet, plagioclase–clinopyroxene–wollastonite, plagioclase–clinopyroxene–wollastonite–epidote, and plagioclase–clinopyroxene skarns. The rocks are coarse- to fine-grained and characterized by an uneven distribution of the constituent minerals. The traditional methods for quantitative analysis (point-counting and norm calculations) are not applicable for such inhomogeneous samples containing minerals with highly variable chemical compositions. Up to eight individual mineral phases have been measured in each sample. To obtain the mineral quantities in the skarn rocks preliminary optical microscopy and chemical investigation by electron probe microanalysis (EPMA) were performed for the identification of some starting components for the Rietveld analysis and to make comparison with the Rietveld X-ray powder diffraction results. All of the refinements are acceptable, as can be judged by the standard indices of agreement and by the visual fits of the observed and calculated diffraction profiles. A good correlation between the refined mineral compositions and the data of the EPMA measurements was achieved.


2021 ◽  
Vol 54 (3) ◽  
Author(s):  
Matthew R. Rowles

The quality of X-ray powder diffraction data and the number and type of refinable parameters have been examined with respect to their effect on quantitative phase analysis (QPA) by the Rietveld method using data collected from two samples from the QPA round robin [Madsen, Scarlett, Cranswick & Lwin (2001). J. Appl. Cryst. 34, 409–426]. From the analyses of these best-case-scenario specimens, a series of recommendations for minimum standards of data collection and analysis are proposed. It is hoped that these will aid new QPA-by-Rietveld users in their analyses.


Sign in / Sign up

Export Citation Format

Share Document