Numerical Study on Cracking Process of Masonry Structure

2005 ◽  
Vol 9 ◽  
pp. 117-126 ◽  
Author(s):  
Shu Hong Wang ◽  
Yong Bin Zhang ◽  
Chun An Tang ◽  
Lian Chong Li

Masonry structure is heterogeneous and has been widely used in building and construction engineering. The study on cracking pattern of masonry structure is significant to engineering design. Many previous investigations on the failure process of masonry structure are usually based on the homogenization technique by selecting a typical unit of masonry to serve as a representative volume. This kind of numerical analysis neglects the mesoscopic heterogeneous structure, which cannot capture the full cracking process of masonry structures. The cracking process of masonry structure is dominantly affected by its heterogeneous internal structures. In this paper, a mesoscopic mechanical model of masonry material is developed to simulate the behavior of masonry structure. Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was put forward to simulate the cracking process of masonry structure, which was considered as a two-phase composite of block and mortar phases. The crack propagation processes simulated with this model shows good agreement with those of experimental observations. The numerical results show that numerical analysis clearly reflect the modification, transference and their interaction of the stress field and damage evolution process which are difficult to achieve by physical experiments. It provides a new method to research the forecast theory of failure and seismicity of masonry. It has been found that the fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level.

2005 ◽  
Vol 297-300 ◽  
pp. 1025-1031 ◽  
Author(s):  
Shu Hong Wang ◽  
Chun An Tang ◽  
Juan Xia Zhang ◽  
Wan Cheng Zhu

This short paper will present a two-dimensional (2D) model of masonry material. This mesoscopic mechanical model is suitable to simulate the behavior of masonry. Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations. It has been found that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.


2011 ◽  
Vol 201-203 ◽  
pp. 2909-2912
Author(s):  
Yan Feng Feng ◽  
Tian Hong Yang ◽  
Hua Wei ◽  
Hua Guo Gao ◽  
Jiu Hong Wei

Rock mass is the syntheses composed of kinds of structure and structured surfaces. The joint characters is influencing and controlling the rock mass strength, deformation characteristics and rock mass engineering instability failure in a great degree. Through using the RFPA2D software, which is a kind of material failure process analysis numerical methods based on finite element stress analysis and statistical damage theory, the uniaxial compression tests on numerical model are carried, the impact of the trace length of rock joints and the fault throws on rock mechanics parameters are studied. The results showed that with the gradual increase of trace length,compression strength decreased gradually and its rate of variation getting smaller and smaller, the deformation modulus decreased but the rate of variation larger and larger; with the fault throws increasing, the compression strength first increases and then decreases, when the fault throw is equal to the trace length, the deformation modulus is the largest. When the joint trace length is less than the fault throw, the rate of the deformation modulus is greater than that of trace length, but the deformation modulus was not of regular change.


2011 ◽  
Vol 90-93 ◽  
pp. 74-78 ◽  
Author(s):  
Jun Hu ◽  
Ling Xu ◽  
Nu Wen Xu

Fault is one of the most important factors affecting tunnel instability. As a significant and casual construction of Jinping II hydropower station, when the drain tunnel is excavated at depth of 1600 m, rockbursts and water inrush induced by several huge faults and zone of fracture have restricted the development of the whole construction. In this paper, a progressive failure progress numerical analysis code-RFPA (abbreviated from Rock Failure Process Analysis) is applied to investigate the influence of faults on tunnel instability and damaged zones. Numerical simulation is performed to analyze the stress distribution and wreck regions of the tunnel, and the results are consistent with the phenomena obtained from field observation. Moreover, the effects of fault characteristics and positions on the construction mechanical response are studied in details. Some distribution rules of surrounding rock stress of deep-buried tunnel are summarized to provide the reasonable references to TBM excavation and post-support of the drain tunnel, as well as the design and construction of similar engineering in future.


2011 ◽  
Vol 268-270 ◽  
pp. 857-862
Author(s):  
Zhu Jie He ◽  
Tao Xu ◽  
Chun An Tang

In this paper, the bond length effect of FRP plate on bonding performance and the distribution patterns of the stress in FRP plate was investigated using 3D Realistic Failure Process Analysis (RFPA3D) code to study the debonding mechanism of the FRP plate bonded to concrete block. Numerical simulations show that the progressive debonding of FRP plate bonded to concrete occurs in the concrete on the condition of different bond lengths can be divided into four stages: elastic-deformation stage, elastic-softening stage, elastic-softening-debonding stage and softening-debonding stage. It is also show that the interfacial bond strength and the global slip of FRP-to-concrete increase with the increase of the bond length.


2005 ◽  
Vol 297-300 ◽  
pp. 1196-1201 ◽  
Author(s):  
Chun An Tang ◽  
Zheng Zhao Liang ◽  
Yong Bin Zhang ◽  
Tao Xu

This paper introduces a newly developed three-dimensional Material Failure Process Analysis code, MFPA3D to model the failure processes of brittle materials, such as concrete, ceramics, fibrous materials, and rocks. This numerical code, based on a stress analysis method (finite element method) and a material failure constitutive law, can be taken as a tool in numerical modeling analysis to enhance our understanding of the failure mechanisms of brittle materials. Properties of material heterogeneity are taken into account. The material is discretized into numerous small elements with fixed size. Fracture behavior can be modeled by reducing the material stiffness and strength after the peak strength of the material has been reached. The evolution of the cracking process down to full fracture implies strain softening, which describes the post-peak gradual decline of stress at increasing strain. In the present study, a Mohr-Coulomb criterion envelop with a tension cut-off is used so that the element may fail either in shear or in tension. Simulated fracture or crack patterns of two examples are found quite realistic, and the results strongly depend on the heterogeneity level.


2021 ◽  
Author(s):  
Pengzhi Pan

<p>This work presents the advancement of a self-developed Cellular Automata Software for engineering Rockmass fracturing processes (CASRock, http://en.casrock.cn/) in the applications of thermo-hydro-mechanical-chemical (THMC) processes in fractured geological media. It contains a series of previous developed numerical systems, namely EPCA for simulation of heterogeneous rock failure process, VEPCA for visco elastoplastic analysis, D-EPCA for rock dynamic response simulation, THMC-EPCA for coupled THMC processes in geological media and RDCA for simulation of rock cracking process from continuity to discontinuity. In CASRock, the non-isothermal, unsaturated fluid flow, mechanical process and chemical reaction are sequentially coupled by updating all the state variables using cellular automaton technique and finite difference method on spatial and temporal scale, respectively. The Lagrangian method is used to simulate the particle transport. The control equations, coupling scheme and numerical implementation are briefly introduced. Several applications, including  in the background of high level nuclear waste disposal are provided to show the abilities of CASRock in the simulation of coupling processes between physical fields. These applications include, (1) stability analysis of engineering rockmass under mechanical loading, (2) numerical study on coupled TM processes in hard rock pillar, (3) study on coupled THM processes in engineering barrier, (4) simulation of the THMC process in fractured rock.</p>


2005 ◽  
Vol 297-300 ◽  
pp. 2605-2611
Author(s):  
Shan Yong Wang ◽  
S.K. Au ◽  
K.C. Lam ◽  
Chun An Tang

Borehole breakout is the process by which portions of borehole or tunnel wall fracture or spall when subjected to compressive stresses. The stress-strain characteristics of rock during loading and unloading confining pressure are studied firstly. To overcome the difficulties in analytical model studies, a numerical code, RFPA2D (Rock Failure Process Analysis), developed by CRISR, Northeastern University, China, is used to investigate the progressive failure of breakout around tunnel. The heterogeneity of rock was also taken into account in the software. The numerical simulation reproduces the formation notch in rocks by the growth, interaction and coalescence of randomly distributed macrocracks. It is illustrated from the numerical simulated results that breakout direction of tunnel is parallel with the minor stress tensor in the plane perpendicular to the borehole axis. Specifically due to the inclusion of heterogeneity, some peculiarities are studied both in the evolution of fracture and the influence of borehole on the peak intensity of specimen as well as the AE event patterns.


2014 ◽  
Vol 501-504 ◽  
pp. 244-247
Author(s):  
Yun Jie Zhang ◽  
Cheng Fan

In this paper,the mechanical properties of rock experiencing the variation of joint tip distance from sample end under uniaxial compression condition were simulated.Numerical simulation for the different rock sample in the uniaxial compression have been conducted to evaluate the effects of joint tip distance from sample end on the overall mechanical behaviour of jointed rock masses. It was done using the Rock Failure Process Analysis program RFPA2D. Numerically simulated stress-strain curve, peak stress, peak strain and failure patterns were compared with the corresponding physical tests. We found that specimen joint tip distance from sample end corresponding value (distance from the crack tip to the compression surface) linear relationship with the compressive strength values .Numerical simulations agree well with physical results, it is shown that RFPA2D is suitable for the analysis of joint tip distance from sample end effect on rock fracture.


2005 ◽  
Vol 297-300 ◽  
pp. 2598-2604
Author(s):  
Shan Yong Wang ◽  
S.K. Au ◽  
K.C. Lam ◽  
Chun An Tang

By using numerical code RFPA2D (Rock Failure Process Analysis), the evolution of fracture around cavities subjected to uniaxial and polyaxial compression is examined through a series of model simulation. It is shown from the numerical results that the chain of events leading to the collapse of the cavity may involve all or some of the fractures designated as primary tensile, shear and remote fracture. Numerical simulated results reproduce the evolution of three types of fractures. Under the condition of no confining pressure, the tensile mode dominates with collapse coinciding with the sudden and explosive appearance of the secondary tensile fracture; at moderate higher confining pressure, the tensile mode is depressed, comparatively, the shear effect is strengthened. Nevertheless, tensile fractures especially in remote fractures stage still play a role; at higher pressure, the shear fracture dominates the remote fractures. In addition, the evolution and interact of fractures between multiple cavities is investigated, considering the stress redistribution and transference in compressive and tensile stress field.


Sign in / Sign up

Export Citation Format

Share Document