Implementation of a Mesoscopic Mechanical Model for the Shear Fracture Process Analysis of Masonry

2005 ◽  
Vol 297-300 ◽  
pp. 1025-1031 ◽  
Author(s):  
Shu Hong Wang ◽  
Chun An Tang ◽  
Juan Xia Zhang ◽  
Wan Cheng Zhu

This short paper will present a two-dimensional (2D) model of masonry material. This mesoscopic mechanical model is suitable to simulate the behavior of masonry. Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations. It has been found that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

2005 ◽  
Vol 9 ◽  
pp. 117-126 ◽  
Author(s):  
Shu Hong Wang ◽  
Yong Bin Zhang ◽  
Chun An Tang ◽  
Lian Chong Li

Masonry structure is heterogeneous and has been widely used in building and construction engineering. The study on cracking pattern of masonry structure is significant to engineering design. Many previous investigations on the failure process of masonry structure are usually based on the homogenization technique by selecting a typical unit of masonry to serve as a representative volume. This kind of numerical analysis neglects the mesoscopic heterogeneous structure, which cannot capture the full cracking process of masonry structures. The cracking process of masonry structure is dominantly affected by its heterogeneous internal structures. In this paper, a mesoscopic mechanical model of masonry material is developed to simulate the behavior of masonry structure. Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was put forward to simulate the cracking process of masonry structure, which was considered as a two-phase composite of block and mortar phases. The crack propagation processes simulated with this model shows good agreement with those of experimental observations. The numerical results show that numerical analysis clearly reflect the modification, transference and their interaction of the stress field and damage evolution process which are difficult to achieve by physical experiments. It provides a new method to research the forecast theory of failure and seismicity of masonry. It has been found that the fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level.


Author(s):  
Feng Gao ◽  
Jianping Jing ◽  
Janine Johnson ◽  
Frank Z. Liang ◽  
Richard L. Williams ◽  
...  

In this paper, single solder joints (SSJs) were subjected to moderate speed loading (5mm/sec) in different directions, from pure tensile, mixed mode to pure shear. Fracture surfaces from different loading directions were examined both experimentally and numerically. It is observed that intermetallic compound (IMC) is formed between the solder alloy and the Cu pad, and failure typically occurs at or near the solder/IMC/Cu interfaces on the board side. Pure tensile loading typically leads to interfacial fracture along the IMC/Cu interface. Mixed mode loading usually results in a mixture of interfacial and cohesive failure with crack propagating in a zigzag fashion between the solder/IMC interface and the solder alloy. Loading with higher shear component tends to result in more cohesive failure of the solder alloy near the solder/IMC interface. Under pure shear loading, failure is almost always cohesive within the solder alloy near the solder/IMC interface.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Tianhui Ma ◽  
Long Wang ◽  
Fidelis Tawiah Suorineni ◽  
Chunan Tang

Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA) 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.


2005 ◽  
Vol 297-300 ◽  
pp. 1196-1201 ◽  
Author(s):  
Chun An Tang ◽  
Zheng Zhao Liang ◽  
Yong Bin Zhang ◽  
Tao Xu

This paper introduces a newly developed three-dimensional Material Failure Process Analysis code, MFPA3D to model the failure processes of brittle materials, such as concrete, ceramics, fibrous materials, and rocks. This numerical code, based on a stress analysis method (finite element method) and a material failure constitutive law, can be taken as a tool in numerical modeling analysis to enhance our understanding of the failure mechanisms of brittle materials. Properties of material heterogeneity are taken into account. The material is discretized into numerous small elements with fixed size. Fracture behavior can be modeled by reducing the material stiffness and strength after the peak strength of the material has been reached. The evolution of the cracking process down to full fracture implies strain softening, which describes the post-peak gradual decline of stress at increasing strain. In the present study, a Mohr-Coulomb criterion envelop with a tension cut-off is used so that the element may fail either in shear or in tension. Simulated fracture or crack patterns of two examples are found quite realistic, and the results strongly depend on the heterogeneity level.


2021 ◽  
Vol 11 (18) ◽  
pp. 8585
Author(s):  
Bin Fu ◽  
Yingchun Li ◽  
Chun’an Tang ◽  
Zhibin Lin

Rock slope stability is commonly dominated by locked patches along a potential slip surface. How naturally heterogeneous locked patches of different properties affect the rock slope stability remains enigmatic. Here, we simulate a rock slope with two locked patches subjected to shear loading through a self-developed software, rock failure process analysis (RFPA). In the finite element method (FEM)-based code, the inherent heterogeneity of rock is quantified by the classic Weibull distribution, and the constitutive relationship of the meso-scale element is formulated by the statistical damage theory. The effects of mechanical and geometrical properties of the locked patches on the stability of the simulated rock slope are systematically studied. We find that the rock homogeneity modulates the failure mode of the rock slope. As the homogeneity degree is elevated, the failure of the locked patch transits from the locked patch itself to both the interfaces between the locked patched and the slide body and the bedrock, and then to the bedrock. The analysis of variance shows that length and strength of locked patch affect most shear strength and the peak shear displacement of the rock slope. Most of the rock slopes exhibit similar failure modes where the macroscopic cracks mainly concentrate on the interfaces between the locked patch and the bedrock and the slide body, respectively, and the acoustic events become intensive after one of the locked patches is damaged. The locked patches are failed sequentially, and the sequence is apparently affected by their relative positions. The numerically reproduced failure mode of the rock slope with locked patches of different geometrical and mechanical properties are consistent with the laboratory observations. We also propose a simple spring-slider model to elucidate the failure process of the rock slope with locked patches.


2005 ◽  
Vol 297-300 ◽  
pp. 2598-2604
Author(s):  
Shan Yong Wang ◽  
S.K. Au ◽  
K.C. Lam ◽  
Chun An Tang

By using numerical code RFPA2D (Rock Failure Process Analysis), the evolution of fracture around cavities subjected to uniaxial and polyaxial compression is examined through a series of model simulation. It is shown from the numerical results that the chain of events leading to the collapse of the cavity may involve all or some of the fractures designated as primary tensile, shear and remote fracture. Numerical simulated results reproduce the evolution of three types of fractures. Under the condition of no confining pressure, the tensile mode dominates with collapse coinciding with the sudden and explosive appearance of the secondary tensile fracture; at moderate higher confining pressure, the tensile mode is depressed, comparatively, the shear effect is strengthened. Nevertheless, tensile fractures especially in remote fractures stage still play a role; at higher pressure, the shear fracture dominates the remote fractures. In addition, the evolution and interact of fractures between multiple cavities is investigated, considering the stress redistribution and transference in compressive and tensile stress field.


2005 ◽  
Vol 297-300 ◽  
pp. 2617-2622
Author(s):  
Hou Quan Zhang ◽  
Li Song ◽  
Junjie Liu ◽  
Tao Xu ◽  
Xiong Chen ◽  
...  

The purpose of this paper is to investigate shear strength and failure pattern of rock containing two parallel open joints with different horizontal separations using RFPA2D (rock failure process analysis) code. Specimens are placed in a direct shear box. The upper is invariably loaded with normal stress 0.15MPa, the left is controlled by a constant increasing horizontal displacement 0.002mm/step. The whole shear failure process is visually represented and the failure pattern in reasonable accordance with previous experimental results is obtained. In general, only mixed mode (tensile and shear) is observed for the failure pattern in the numerical tests. Tensile cracks initiate from the tips of pre-existing joints respectively with an initiation angle of about 45°, then propagate towards another joint in a single stria; Shear cracks occur in the further process and the main direction of shear failure surface is roughly parallel to shear loading. The failure pattern of bridged rock is mainly controlled by the joint separation and the roughness of wavy shear failure surface is different, which is mostly influenced by the joint separation in the same way. The peak shear load, related to the failure patterns, decreases with the increase of joint separation, but the shear strength of intact rock is invariable.


2010 ◽  
Vol 452-453 ◽  
pp. 581-584 ◽  
Author(s):  
G. Li ◽  
C.A. Tang ◽  
L.C. Li

In order to investigate the hydraylic fracture development of the specimens and simulate the cracks drived by fluid flow in rocks, a flow-stress-damage (FSD) model, implemented with parallel Rock Failure Process Analysis code (parallel -RFPA3D), is presented. The numerical code is based on linear elastic damage mechanics on mesoscopic scale and FEM. For simulating the complete progressive 3D failure and macroscopic mechanical behaviors of rock materials, rock properties such as elastic constants, peak strength, and poisson ratio are randomly distributed to reflect the initial random distributed weakness in mesoscopic scale. The FSD model is used to represent the permeability variation at the two stages, that is stress-dependent permeability for pre-failure and deformation-dependent permeability for post-peak stage of rock at the elemental scale. The results of the simulation with 680,000-element cylindrical rock specimen coincide well with reported experimental results and the process of crack from initiation to the instability extensions is captured vividly. The results and the process indicate that the FSD model works well and parallel-RFPA3D incorporated with FSD model is a valid tool of understanding the physical essence of the evolution of fracture with large-scale elements and fluid flows in rocks.


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Zengliang Gao ◽  
Tianwen Zhao ◽  
Xiaogui Wang ◽  
Yanyao Jiang

Uniaxial, torsion, and axial-torsion fatigue experiments were conducted on a pressure vessel steel, 16MnR, in ambient air. The uniaxial experiments were conducted using solid cylindrical specimens. Axial-torsion experiments employed thin-walled tubular specimens subjected to proportional and nonproportional loading. The true fracture stress and strain were obtained by testing solid shafts under monotonic torsion. Experimental results reveal that the material under investigation does not display significant nonproportional hardening. The material was found to display shear cracking under pure shear loading but tensile cracking under tension-compression loading. Two critical plane multiaxial fatigue criteria, namely, the Fatemi–Socie criterion and the Jiang criterion, were evaluated based on the experimental results. The Fatemi–Socie criterion combines the maximum shear strain amplitude with a consideration of the normal stress on the critical plane. The Jiang criterion makes use of the plastic strain energy on a material plane as the major contributor to the fatigue damage. Both criteria were found to correlate well with the experiments in terms of fatigue life. The predicted cracking directions by the criteria were less satisfactory when comparing with the experimentally observed cracking behavior under different loading conditions.


Sign in / Sign up

Export Citation Format

Share Document