scholarly journals An Investigation on a Novel 3-RCU Flexible Micromanipulator

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 423 ◽  
Author(s):  
Junnan Qian ◽  
Yangmin Li ◽  
Lukai Zhuge

A novel type of spatial three revolute-cylindrical-universal (3-RCU) flexible micro manipulator is designed based on flexible hinges, and analyzed by finite element analysis (FEA). The piezoelectric actuators are adopted as driving devices in this platform, a new lever amplification mechanism is designed as its micro-displacement amplification mechanism, the workspace of the platform is enlarged, and the theoretical and simulation amplification ratios of the amplification mechanism are 3.056 and 2.985, respectively. The margin of error is just 2.3%. In space, the 3-RCU platform can realize the micro movement of three degrees of freedom. Also, the platform has a high carrying capacity, less motion loss, and the transmission efficiency is higher when the platform works. The decoupling performance, stress under extreme conditions and natural frequency of the platform are simulated by ANSYS Workbench software. A series of simulation analyses show the feasibility and security of the platform. The platform has good decoupling and working performance. The simulation results show that the platform has high simulation stiffness and high positioning accuracy.

2018 ◽  
Vol 15 (3) ◽  
pp. 172988141877390 ◽  
Author(s):  
Yue Zhu ◽  
Jiangming Kan ◽  
Wenbin Li ◽  
Feng Kang

As to the complicated terrain in forest, forestry chassis with an articulated body with three degrees of freedom and installed luffing wheel-legs (FC-3DOF&LW) is a novel chassis that can surmount obstacles. In addition, the rear frame of FC-3DOF&LW is regarded as the platform to carry equipment. Small inclination angle for rear frame contributes to stability and ride comfort. This article describes the strategy of traversing obstacles and simulation for FC-3DOF&LW that drives in forest terrain. First, key structures of FC-3DOF&LW are briefly introduced, which include articulated structure with three degrees of freedom and luffing wheel-leg. Based on the sketch of luffing wheel-leg, the movement range of luffing wheel-leg is obtained by hydraulic cylinder operation. Second, the strategy of crossing obstacles that are simplified three models of terrain is presented, and the simulation for surmounting obstacles is constructed in multibody dynamics software. The simulation results demonstrate that the inclination angle of rear frame is 18° when slope is 30°. A maximum 12° decrease of inclination angle for rear frame can be acquired when luffing wheel-legs are applied. For traversing obstacles with both sides, the maximum inclination angle of rear frame is about 1.2° and is only 3° for traversing obstacles with single side.


2018 ◽  
Vol 35 (3) ◽  
pp. 305-313 ◽  
Author(s):  
C. Rebiai

ABSTRACTIn this investigation, a new simple triangular strain based membrane element with drilling rotation for 2-D structures analysis is proposed. This new numerical model can be used for linear and dynamic analysis. The triangular element is named SBTE and it has three nodes with three degrees of freedom at each node. The displacements field of this element is based on the assumed functions for the various strains satisfying the compatibility equations. This developed element passed both patch and benchmark tests in the case of bending and shear problems. For the dynamic analysis, lumped mass with implicit/explicit time integration are employed. The obtained numerical results using the developed element converge toward the analytical and numerical solutions in both analyses.


Author(s):  
Mark D. Bedillion

Actuator arrays are planar distributed manipulation systems that use multiple two degree-of-freedom actuators to manipulate objects with three degrees of freedom (x, y, and θ). Prior work has discussed actuator array dynamics while neglecting the inertia of the actuators; this paper extends prior work to the case of non-negligible actuator inertia. The dynamics are presented using a standard friction model incorporating stiction. Simulation results are presented that show object motion under previously derived control laws.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Nathan A. Pehrson ◽  
Pietro Bilancia ◽  
Spencer Magleby ◽  
Larry Howell

Abstract Lamina emergent torsion (LET) joints for use in origami-based applications enables folding of panels. Placing LET joints in series and parallel (formulating LET arrays) opens the design space to provide for tunable stiffness characteristics in other directions while maintaining the ability to fold. Analytical equations characterizing the elastic load–displacement for general serial–parallel formulations of LET arrays for three degrees-of-freedom are presented: rotation about the desired axis, in-plane rotation, and extension/compression. These equations enable the design of LET arrays for a variety of applications, including origami-based mechanisms. These general equations are verified using finite element analysis, and to show variability of the LET array design space, several verification plots over a range of parameters are provided.


Author(s):  
Abdelrahem Atawnih ◽  
Zoe Doulgeri ◽  
George A. Rovithakis

In this work, an admittance control scheme is proposed utilizing a highly robust prescribed performance position tracking controller for flexible joint robots which is designed at the operational space. The proposed control scheme achieves the desired impedance to the external contact force as well as superior position tracking in free motion without any robot model knowledge, as opposed to the torque based impedance controllers. Comparative simulation results on a three degrees-of-freedom (3DOF) flexible joint manipulator, illustrate the efficiency of the approach.


2013 ◽  
Vol 690-693 ◽  
pp. 2978-2981 ◽  
Author(s):  
Jian Zhong Zhang ◽  
Xin Peng Xie ◽  
Chuan Jin Li ◽  
Ying Ying Xin ◽  
Zhao Ming He

This paper describes a parallel three degrees of freedom delta mechanism used for pick-and-place. It has the advantages of simple integral structure, strong bearing capacityhigh precisionkinematics and dynamics performance. According to this mechanism wide development prospect, the company study on the inverse kinematics inverse dynamics analysis and the static analysis by using ANSYS finite element analysis Software of Delta. These analyses have laid a good theoretical foundation for future research. These researches provide possible for widely used in foodpackingautomated assembly line occasions of small and medium-sized enterprises.


2014 ◽  
Vol 909 ◽  
pp. 135-140
Author(s):  
Jie Jiang Shao ◽  
Feng Peng Wei ◽  
Lan Zhen

A subminiature submersible has been designed on the basis of the condition of the marine ranching, especially the shape of the submersible in view of the complex environment of marine ranching. Its mainly designed from three major movements, namely advance, ups-downs and yawing movement; it can complete three degrees of freedom movement. At the same time a force analysishas beengiven. Thetransfer functions have been deduced, and the simulation structure has been designed according to its kinematics model. According to the simulation results, the feasibility of the kinematics model was verified.


Author(s):  
Dan Zhang ◽  
Zhen Gao ◽  
Beizhi Li

A new compliant parallel micromanipulator is proposed in this paper. The manipulator has three degrees of freedom (DOF) and can generate motions in a microscopic scale. It can be used for biomedical engineering and fiber optics industry. In the paper, the detailed design of the structure is first introduced, followed by the kinematic analysis and performance evaluation. Second, a finite-element analysis of resultant stress, strain, and deformations is evaluated based upon different inputs of the three piezoelectric actuators. Finally, the genetic algorithms and radial basis function networks are implemented to search for the optimal architecture and behavior parameters in terms of global stiffness, dexterity and manipulability.


2013 ◽  
Vol 385-386 ◽  
pp. 137-140
Author(s):  
Wei Li Sun ◽  
Sen Zhang ◽  
Wei Wei Ge ◽  
Yuan Yuan Li

The structure of inner cylinder component of drum washing machine has a critical impact on its working performance and service life, as a result, the structure analysis of the drum assembly (spider and main shaft) is chosen to be the research object in this paper. As the three-dimensional model is established by PRO/E, the structure intensity characteristic has been analyzed with the method of finite element analysis which is based on software Ansys/Workbench. According to the stress distribution characteristic, the maximum stress value that the spider has been bearing can be contrasted and analyzed with different load which can make sure the periodic properties of structure loads. The analysis and optimization method based on Ansys/Workbench provided a new thought which had the guiding significance for the development of new products of drum washing machine.


This paper study about the analytical behaviour of Concrete beam encased with Steel castellated beam as composite member with various web opening section of the castellated beam as optimization of section by its maximum Load carrying capacity and deflection. The modelling and Finite Element Analysis was done using Ansys Workbench 16.2. The Concrete beam having section size of 150mm x 170 mm x 1500mm encased with Structural Steel ISMB100 of span 1400mm is used for castellated beam for various shape of web opening are provided. The parametric study has shown the Deflection and Load carrying capacity of the various cross sectional beams with Hexagonal opening (inscribed in the circle 25mm radius) which has high load carrying capacity and the less deflection while compared to the other sections of circular web opening (25mm radius), hexagonal wide web opening (25mm with 1:1:1 web ratio), and rectangular web opening of (25mm x 50mm). Alternate incremental loading is applied by using Ansys workbench 16.2 and results and graphs are plotted.


Sign in / Sign up

Export Citation Format

Share Document