Effect of High Strain Rate on Adiabatic Shear Sensitivity and Microstructures in Pure Titanium

2014 ◽  
Vol 915-916 ◽  
pp. 567-571
Author(s):  
Tong Bo Wang ◽  
Bo Long Li ◽  
Mian Li ◽  
Zuo Ren Nie

As a model material, commercial pure titanium was rolled to plates with different dislocation boundaries. The dynamic mechanical response of Ti specimen was analyzed during impacted with Split Hopkinson Pressure Bar (SHPB) at different strain rates, and microstructure evolution was investigated using optical microscopy and transmission electron microscopy. It was found that adiabatic shear sensitivity was decreased with increasing strain rates for all as-annealed, 25% and 50% cold rolled states. To the contrary, for 70% cold rolled state the adiabatic shear sensitivity was increased with increasing strain rates. The microstructure of adiabatic shear bands (ASBs) were developed from elongation morphology to fine equiaxed grains in the specimens of 25% cold rolled state, and ASBs became broader with increasing strain rate.

2014 ◽  
Vol 968 ◽  
pp. 7-11
Author(s):  
Tong Bo Wang ◽  
Bo Long Li ◽  
Mian Li ◽  
Ying Chao Li ◽  
Zuo Ren Nie

The high strain rate deformation behavior of as-annealed and as-cold rolled pure titanium was inspected by Split Hopkinson Pressure Bar (SHPB). The effect of deformation structure on adiabatic shear behavior in pure titanium was analyzed from the aspect of dynamic mechanical response and microstructural evolution. It was found that the strong {0001} basal texture was formed in as-cold rolled pure titanium. There were Geometrically Necessary Boundaries (GNBs) with spacing of 0.6μm and Incidental Dislocation Boundaries (IDBs) with size of 80nm in one grain. The enhancement of adiabatic shear sensitivity in as-cold rolled titanium was attributed to the deformation induced dislocation boundaries. The core of adiabatic shear band (ASB) was full of fine equiaxed grains with average size of 0.4μm, which was induced by dynamic recrystallization.


2001 ◽  
Author(s):  
M. Vural ◽  
G. Ravichandran

Abstract The compression behavior of a naturally occurring porous and heterogeneous biocomposite, balsa wood, along the grain direction is investigated at strain rates 10−3 to 104 s−1. Specimens with different densities, ranging from 55 to 380 kg/m3, were loaded by a modified Kolsky (split Hopkinson) pressure bar apparatus at varying high strain rates and by a screw-driven testing machine at quasi-static strain rates. The mechanical response of balsa wood is documented and the variation of compressive strength, crushing stress and densification strain as a function of density and strain rate is presented. Results show that characteristics of mechanical response for balsa wood are significantly affected by the strain rate and density.


2018 ◽  
Vol 183 ◽  
pp. 04005 ◽  
Author(s):  
Bar Nurel ◽  
Moshe Nahmany ◽  
Adin Stern ◽  
Nahum Frage ◽  
Oren Sadot

Additive manufacturing by Selective Laser Melting of metals is attracting substantial attention, due to its advantages, such as short-time production of customized structures. This technique is useful for building complex components using a metallic pre-alloyed powder. One of the most used materials in AMSLM is AlSi10Mg powder. Additively manufactured AlSi10Mg may be used as a structural material and it static mechanical properties were widely investigated. Properties in the strain rates of 5×102–1.6×103 s-1 and at higher strain rates of 5×103 –105 s-1 have been also reported. The aim of this study is investigation of dynamic properties in the 7×102–8×103 s-1 strain rate range, using the split Hopkinson pressure bar technique. It was found that the dynamic properties at strain-rates of 1×103–3×103 s-1 depend on a build direction and affected by heat treatment. At higher and lower strain-rates the effect of build direction is limited. The anisotropic nature of the material was determined by the ellipticity of samples after the SHPB test. No strain rate sensitivity was observed.


2019 ◽  
Vol 54 (5) ◽  
pp. 659-668 ◽  
Author(s):  
K Rahmani ◽  
GH Majzoobi ◽  
A Atrian

Mg–SiC nanocomposite samples were fabricated using split Hopkinson pressure bar for different SiC volume fractions and under different temperature conditions. The microstructures and mechanical properties of the samples including microhardness and stress–strain curves were captured from quasi-static and dynamic tests carried out using Instron and split Hopkinson pressure bar, respectively. Nanocomposites were produced by hot and high-rate compaction method using split Hopkinson pressure bar. Temperature also significantly affects relative density and can lead to 2.5% increase in density. Adding SiC-reinforcing particles to samples increased their Vickers microhardness from 46 VH to 68 VH (45% increase) depending on the compaction temperature. X-ray diffraction analysis showed that by increasing temperature from 25℃ to 450℃, the Mg crystallite size increases from 37 nm to 72 nm and decreases the lattice strain from 45% to 30%. In quasi-static tests, the ultimate compressive strength for the compaction temperature of 450℃ was improved from 123% for Mg–0 vol.% SiC to 200% for the Mg–10 vol.% SiC samples compared with those of the compaction at room temperature. In dynamic tests, the ultimate strength for Mg–10 vol.% SiC sample compacted at high strain rate increased remarkably by 110% compared with that for Mg–0 vol.% SiC sample compacted at low strain rate.


2018 ◽  
Vol 276 ◽  
pp. 140-147
Author(s):  
Martina Drdlová ◽  
Miloslav Popovič ◽  
René Čechmánek

This paper presents an experimental study on the high strain rate compressive behavior of micro-fibre reinforced ultrahigh performance cementitious composite, which is intended to be used as a matrix for slurry infiltrated fibre concrete (SIFCON). Cementitious composite specimens with 5 different types of microfibres, namely aramid, carbon, wollastonite, polypropylene and glass in amounts of 1.5-2.0% by volume were prepared and investigated. Split Hopkinson pressure bar (SHPB) equipment was used to determine the cementitious composite behavior at strain rates up to 1600 s-1. Quasistatic tests were performed, as well and ratios of these properties at high strain rates to their counterparts at static loading were compared. The dynamic increase factors were calculated. Strain rate sensitivity was observed - compressive strength was found to be increased with strain rate for all tested specimens. Peak stress values, critical compressive strain and post peak behaviour varies for specimens with different micro-fibre reinforcement, which allows to find the optimal reinforcement for high strain rate impacted structures.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1561 ◽  
Author(s):  
Kebin Zhang ◽  
Wenbin Li ◽  
Yu Zheng ◽  
Wenjin Yao ◽  
Changfang Zhao

The temperature and strain rate significantly affect the ballistic performance of UHMWPE, but the deformation of UHMWPE under thermo-mechanical coupling has been rarely studied. To investigate the influences of the temperature and the strain rate on the mechanical properties of UHMWPE, a Split Hopkinson Pressure Bar (SHPB) apparatus was used to conduct uniaxial compression experiments on UHMWPE. The stress–strain curves of UHMWPE were obtained at temperatures of 20–100 °C and strain rates of 1300–4300 s−1. Based on the experimental results, the UHMWPE belongs to viscoelastic–plastic material, and a hardening effect occurs once UHMWPE enters the plastic zone. By comparing the stress–strain curves at different temperatures and strain rates, it was found that UHMWPE exhibits strain rate strengthening and temperature softening effects. By modifying the Sherwood–Frost model, a constitutive model was established to describe the dynamic mechanical properties of UHMWPE at different temperatures. The results calculated using the constitutive model were in good agreement with the experimental data. This study provides a reference for the design of UHMWPE as a ballistic-resistant material.


2018 ◽  
Vol 1145 ◽  
pp. 100-105
Author(s):  
Ivan V. Smirnov ◽  
Alexander Y. Konstantinov

The nanocrystalline (NC) and ultrafine-grained (UFG) structures of metallic materials can lead to their extraordinary high strength. However, most of the papers on this topic consider deformation parameters of NC and UFG materials only for the case of quasi-static tensile tests. Characteristics of dynamic strength and fracture of such materials remain unexplored. This paper presents a study of the mechanical behavior of pure titanium Grade 4 with a coarse-grained (CG) and UFG structure under uniaxial compression with different strain rates. The UFG structure was provided using the method of equal-channel angular pressing. The dynamic compression was carried out on a setup with the Split-Hopkinson pressure bar. It is found that in the observed range of strain rates 10–3-3×103 s–1, the yield stress of the CG titanium increases by 20%, and does not exceed the yield stress of the UFG titanium. However, the yield stress of the UFG titanium remains close to a quasi-static value. It is shown that these strain-rate dependencies of the yield strength can be predicted by the incubation time approach. The calculated curves show that at strain rates above 104 s–1 the yield stress of the CG titanium becomes higher than the yield strength of the UFG titanium.


2003 ◽  
Vol 125 (3) ◽  
pp. 294-301 ◽  
Author(s):  
B. Song ◽  
W. Chen

Dynamic compressive stress-strain curves at various strain rates of an Ethylene-Propylene-Diene Monomer Copolymer (EPDM) rubber have been determined with a modified split Hopkinson pressure bar (SHPB). The use of a pulse-shaping technique ensures that the specimen deforms at a nearly constant strain rate under dynamically equilibrated stress. The validity of the experiments was monitored by a high-speed digital camera for specimen edge deformation, and by piezoelectric force transducers for dynamic stress equilibrium. The resulting dynamic stress-strain curves for the EPDM indicate that the material is sensitive to strain rates and that the strain-rate sensitivity depends on the value of strain. Based on a strain energy function theory, a one-dimensional dynamic constitutive equation for this rubber was modified to describe the high strain-rate experimental results within the ranges of strain and strain rates presented in this paper.


2006 ◽  
Vol 306-308 ◽  
pp. 905-910 ◽  
Author(s):  
Zhi Hua Wang ◽  
Hong Wei Ma ◽  
Long Mao Zhao ◽  
Gui Tong Yang

The compressive deformation behavior of open-cell aluminum foams with different densities and morphologies was assessed under quasi-static and dynamic loading conditions. High strain rate experiments were conducted using a split Hopkinson pressure bar technique at strain rates ranging from 500 to 1 2000 − s . The experimental results shown that the compressive stress-strain curves of aluminum foams also have the “ three regions” character appeared in general foam materials, namely elastic region, collapse region and densification regions. It is found that density is the primary variable characterizing the modulus and yield strength of foams and the cell appears to have a negligible effect on the strength of foams. It also is found that yield strength and energy absorption is almost insensitive to strain rate and deformation is spatially uniform for the open-celled aluminum foams, over a wide range of strain rates.


Author(s):  
Nitin B. Bhalerao ◽  
Suhas S. Joshi ◽  
N. K. Naik

The titanium alloy (grade 5) is a two-phase material, which finds significant applications in aerospace, medical, marine fields, owing to its superior characteristics like high strength-to-weight ratio, excellent corrosion resistance, and good formability. Hence, the dynamic characteristics of the Ti-6Al-4V alloy are an important area to study. A compressive split Hopkinson pressure bar (SHPB) was used to evaluate the dynamic properties of Ti-6Al-4V alloy under various strain rates between 997 and 1898s−1, and at temperatures between −10 °C and 320 °C. It was evident that the material strength is sensitive to both strain rate and temperature; however, the latter is more predominant than the former. The microstructure of the deformed samples was examined using electron back-scattered diffraction (EBSD). The microscopic observations show that the dynamic impact characteristics of the alloy are higher at higher strain rates than at quasi-static strain rates. The SHPB tests show that the force on the transmitter bar is lower than the force on the incident bar. This indicates that the dynamic equilibrium cannot be achieved during high rate of damage evolution. Various constants in Johnson–Cook (JC) model were evaluated to validate the results. An uncertainty analysis for the experimental results has also been presented.


Sign in / Sign up

Export Citation Format

Share Document