Research of Seismic Design Method of RC Frame Structure Retrofitted by FRP

2014 ◽  
Vol 919-921 ◽  
pp. 1007-1011
Author(s):  
Dian Zhong Yang ◽  
Ya Ping Peng ◽  
Qun Xie

According to the research data and achievements home and abroad, this paper puts forward the practical seismic design process and method of RC frame structure retrofitted by FRP, to promote the application of FRP in the field of RC frame retrofitting. And the ductility design of the column, the reinforcement design of the node area and the structures integral seismic action are discussed, providing a reference for future research and engineering application.

2020 ◽  
Vol 10 (22) ◽  
pp. 8230
Author(s):  
Mengmeng Gao ◽  
Shuang Li

In current structural design codes, elastic vibration modes are used for seismic design. However, when a structure is subjected to strong earthquakes and inelastic response or even when collapse damage is observed, the damage state is always unevenly distributed along the height of the structure. Such a phenomenon implies the materials of stories with elastic response and slight damage are not fully utilized. In this paper, a new practical and effective method, which improves collapse resistant capacity by making full use of materials, is proposed for reinforcement concrete (RC) frame structures at a structural collapse state. In this method, incremental dynamic analysis (IDA) is used to evaluate the structural collapse capacity. Tangent_ratio (TR) is formulated based on the IDA curves, and the longitudinal reinforcement of columns is modified based on the TR to achieve uniform distribution of damage along the height of building. Fewer variables are optimized and constraints of the provisions in current codes are considered, which makes the proposed procedure more computationally efficient and practical. The proposed method is employed on a 5-story RC frame structure to illustrate its feasibility and practicality. Comparison work indicates that the refined seismic design method can significantly increase the collapse resistant capacity and decrease the maximum inter-story drift ratio response under strong ground motion in a few iterative steps without a cost increase.


2012 ◽  
Vol 166-169 ◽  
pp. 640-644
Author(s):  
Qian Zhang ◽  
Ya Feng Yue ◽  
Ergang Xiong

According to lots of documents previously studied, a seismic design method is put forward based on displacement for steel moment frame. This method is established in condition that the yield displacement of steel frame can be determined by its geometrical dimension; then the objective displacement (ultimate displacement) can be determined in light of performance level of the structure, and the corresponding coefficient of ductility can be obtained. Thereafter, the design base shear of steel frame structure can be calculated by the use of reduced elastic spectrum. Thus, the design of stiffness and capacity can be conducted on steel frame structure. The analysis of case study indicates that the displacement-based seismic design method addressed herein is of reasonable safety and reliability, and of operational convenience, which can still realize the seismic design of steel frame structure at different performance levels.


2014 ◽  
Vol 539 ◽  
pp. 695-699
Author(s):  
Lan Fang Luo ◽  
Jing Xu

Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor (RDfactor). A design example is then followed to verify this method.


2014 ◽  
Vol 578-579 ◽  
pp. 864-867
Author(s):  
Meng Zhou Lv ◽  
Tian Peng Pan ◽  
Xiao Bo Wu

"Strong column weak beam" form of frame structure is widely considered to be a reasonable framework structure yield mechanism in the seismic damage. The current structure design is mostly on the basis of that yield mechanism for structural seismic design. Generally the structural engineers ignore the bearing capacity contribution of frame beams that comes from the slab in the seismic design. The structure engineers considered the slab as a rigid component and simply calculate the slab stiffness by magnification factor method, which ignores the core of the problem. This paper analyzes mainly the influence of the destruction of slab form frame structure , studying further how slab affect the yield mechanism of frame structure, and explores the destruction form of difference between two models after analyzing two structure models by the method of Push – over. It shows that the existence of slab make the yield mechanism of RC frame structures different from the design.


2011 ◽  
Vol 194-196 ◽  
pp. 1365-1368
Author(s):  
Chang Lin Fan ◽  
Hui Ji

Displacement based seismic design of RC frame with friction damper is proposed in this paper based on the displacement shape of RC frame. and multi-degree-of-freedom system is transformed into an effective single-degree-of-freedom system. Based on equivalent linearization equivalent period is determined by using the elasto-plastic displacement response spectra, and then the structural members are designed. At the same time, target deformability of the frame and friction damper device is obtained by decomposing the structural storey drift. And the expected deformability of the structure can be guaranteed by appropriate the friction energy dissipation brace. This method could effectively control the seismic performance of the structure in earthquakes.


2000 ◽  
Vol 16 (20) ◽  
pp. 338-346
Author(s):  
Kiyomitsu MURATA ◽  
Masato YAMADA ◽  
Tomohiro TAKAYAMA ◽  
Masanori KINOSHITA

2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2016 ◽  
Vol 142 (3) ◽  
pp. 04015154 ◽  
Author(s):  
Luigi Fiorino ◽  
Ornella Iuorio ◽  
Vincenzo Macillo ◽  
Maria Teresa Terracciano ◽  
Tatiana Pali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document