Study of Complex Networked Control System Exponential Stability

2014 ◽  
Vol 926-930 ◽  
pp. 2106-2109
Author(s):  
Yue Pan

An integrated model considering all complex factors was provided. Combined with data Loss Tolerance and build an asynchronous dynamic system consisting observer and controller in the closed-loop system. The necessary and sufficient conditions to make the system index stable were analyzed.

1998 ◽  
Vol 120 (3) ◽  
pp. 378-388 ◽  
Author(s):  
F. N. Koumboulis ◽  
B. G. Mertzios

The problem of reducing a multi input-multi output system to many single input-single output systems, namely the problem of input-output decoupling, is studied for the case of singular systems i.e., for systems described by dynamic and algebraic equations. The problem of input-output decoupling with simultaneous arbitrary pole assignment, via proportional plus derivative (P-D) state feedback, is extensively solved. The general explicit expression of all P-D controllers solving the decoupling problem is determined. The general form of the diagonal elements of the decoupled closed-loop system is proven to be in a form having a fixed numerator polynomial and an arbitrary denominator polynomial. The necessary and sufficient conditions for the solvability of the problem of decoupling with simultaneous asymptotic stabilizability or arbitrary pole assignment are established. Furthermore, the necessary and sufficient conditions for decoupling with simultaneous impulse elimination, as well as the necessary and sufficient conditions for decoupling with arbitrary assignment of the finite and infinite poles of the closed-loop system, are established.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 249
Author(s):  
Richa Sharma ◽  
Deepak Nagaria

Networked control system is a closed loop system in which information or data travel through the communication network. The presence of communication network will increase time delay and information losses. Due to these losses and delay the performance of the system decreases. This paper represents an analysis to find the stability of the networked control system with the varying time hindrances present in the network. In this research, it has been assumed that the delay in time is less than the sampling period. The stability conditions for NCS have been procured with the use of the Lyapunov function approach and has been described in terms of LMI(Linear Matrix Inequality).This examination confirm the adequate state of stability through MATLAB simulation and the numerical case demonstrates the outcome.  


2016 ◽  
Vol 24 (4) ◽  
pp. 722-738 ◽  
Author(s):  
Atta Oveisi ◽  
Tamara Nestorović

A robust nonfragile observer-based controller for a linear time-invariant system with structured uncertainty is introduced. The [Formula: see text] robust stability of the closed-loop system is guaranteed by use of the Lyapunov theorem in the presence of undesirable disturbance. For the sake of addressing the fragility problem, independent sets of time-dependent gain-uncertainties are assumed to be existing for the controller and the observer elements. In order to satisfy the arbitrary H2-normed constraints for the control system and to enable automatic determination of the optimal [Formula: see text] bound of the performance functions in disturbance rejection control, additional necessary and sufficient conditions are presented in a linear matrix equality/inequality framework. The [Formula: see text] observer-based controller is then transformed into an optimization problem of coupled set of linear matrix equalities/inequality that can be solved iteratively by use of numerical software such as Scilab. Finally, concerning the evaluation of the performance of the controller, the control system is implemented in real time on a mechanical system, aiming at vibration suppression. The plant under study is a multi-input single-output clamped-free piezo-laminated smart beam. The nominal mathematical reduced-order model of the beam with piezo-actuators is used to design the proposed controller and then the control system is implemented experimentally on the full-order real-time system. The results show that the closed-loop system has a robust performance in rejecting the disturbance in the presence of the structured uncertainty and in the presence of the unmodeled dynamics.


Author(s):  
Li Yang ◽  
Xinzhi Liu ◽  
Zhigang Zhang

This paper studies the problem of exponentially dissipative control for singular impulsive dynamical systems. Some necessary and sufficient conditions for exponential dissipativity of such systems are established in terms of linear matrix inequalities (LMIs). A state feedback controller is designed to make the closed-loop system exponentially dissipative. A numerical example is given to illustrate the feasibility of the method.


2011 ◽  
Vol 219-220 ◽  
pp. 1017-1021
Author(s):  
Rui He ◽  
Yun Ping Ge

Mine hoist shoulder important transport tasks. Through the analysis of the main circuit of mine hoist, this paper studies out ASCS digital DC speed control system whose core is microprocessor and whose hardware part constitutes digital trigger and double closed loop system. The software part not only achieves the system's digital PI regulator, logic switching, digital trigger phase shift, pulse channel selection and pulse width setting, but also realizes the systematic detection, monitoring, fault diagnosis, which improves the control precision and work stability of the system.


1999 ◽  
Author(s):  
Mehdi Ahmadian ◽  
James C. Poynor ◽  
Jason M. Gooch

Abstract This study will examine the effectiveness of magneto-rheological (MR) dampers for controlling shock dynamics. Using a system that includes a 50-caliber rifle and a magneto-rheological damper, it is experimentally shown that MR dampers can be quite effective in controlling the compromise that commonly exists between shock forces and strokes across the shock absorber mechanism. A series of tests are conducted to demonstrate that different damping forces by the MR damper can result in different shock-force/stroke profiles. The test results further show that MR dampers can be used in a closed-loop system to adjust the shock loading characteristics in a manner that fits the dynamic system constraints and requirements.


2017 ◽  
Vol 9 (6) ◽  
pp. 1
Author(s):  
Bomisso G. Jean Marc ◽  
Tour\'{e} K. Augustin ◽  
Yoro Gozo

This paper investigates the problem of exponential stability for a damped Euler-Bernoulli beam with variable coefficients clamped at one end and subjected to a force control in rotation and velocity rotation. We adopt the Riesz basis approach for show that the closed-loop system is a Riesz spectral system. Therefore, the exponential stability and the spectrum-determined growth condition are obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-15
Author(s):  
Jian Li ◽  
Yufa Teng ◽  
Qingling Zhang ◽  
Jinghao Li ◽  
Liang Qiao

The problem of impulse elimination for descriptor system by derivative output feedback is investigated in this paper. Based on a novelly restricted system equivalence between matrix pencils, the range of dynamical order of the resultant closed loop descriptor system is given. Then, for the different dynamical order, sufficient conditions for the existence of derivative output feedback to ensure the resultant closed loop system to be impulse free are derived, and the corresponding derivative output feedback controllers are provided. Finally, simulation examples are given to show the consistence with the theoretical results obtained in this paper.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Moshu Qian ◽  
Guanghua Zhong ◽  
Xinggang Yan ◽  
Heyuan Wang ◽  
Yang Cui

In this study, a closed-loop brain stimulation control system scheme for epilepsy seizure abatement is designed by brain-machine interface (BMI) technique. In the controller design process, the practical parametric uncertainties involving cerebral blood flow, glucose metabolism, blood oxygen level dependence, and electromagnetic disturbances in signal control are considered. An appropriate transformation is introduced to express the system in regular form for design and analysis. Then, sufficient conditions are developed such that the sliding motion is asymptotically stable. Combining Caputo fractional order definition and neural network (NN), a finite time fractional order sliding mode (FFOSM) controller is designed to guarantee reachability of the sliding mode. The stability and reachability analysis of the closed-loop tracking control system gives the guideline of parameter selection, and simulation results based on comprehensive comparisons are carried out to demonstrate the effectiveness of proposed approach.


Sign in / Sign up

Export Citation Format

Share Document