Study on Triple-Antenna KINRTK Problem Using BDS Signal

2014 ◽  
Vol 945-949 ◽  
pp. 2323-2326
Author(s):  
Cai Bing Xiang ◽  
Shao Feng Bian ◽  
Ze Min Wu

Traditional kinematic baseline resolution usually needs one or more fixed reference station. In some special application, the reference stations could be in motion. In order to determine kinematic baselines in scenarios of moving reference stations and rovers, a KINRTK model is studied by using a baseline length constraint with three antenna configuration. The baseline and integer resolution method are given. A KINRTK experiment is done, using the data collected on ship enroute, the resolved baselines lengths are compared with the predetermined baselines, which show that the KINREK models baseline length errors are within 5cm, which can verify the effectiveness and accuracy of the model proposed and ambiguity resolution method.

1999 ◽  
Vol 52 (1) ◽  
pp. 80-89 ◽  
Author(s):  
T. Moore ◽  
G. W. Roberts

Over the last few years, on-the-fly integer ambiguity resolution for GPS has proven to be successful over short baselines (<20 km). However, the remaining challenge has been to extend the length of the baseline between the reference station and the mobile receiver, whilst still maintaining the capability of on-the-fly resolution and true carrier-based kinematic positioning. The goal has been to achieve centimetric level positioning at ranges of over 500 km. New techniques have been developed at the University of Nottingham to allow very long baseline integer ambiguity resolution, on-the-fly. A major problem with the use of carrier phase data is that posed by cycle slips. A technique for detecting and correcting cycle slips has been developed, and its use is discussed in this paper. The new technique has been proven through a series of trials, one of which included two flights to the North Pole, performing centimetric level positioning all the way to the pole. For many years, the GD Aero-Systems Course of the Air Warfare Centre based at RAF Cranwell executed a series of equipment flight trials to the North Pole, called the ARIES Flights. In May 1996, the authors were fortunate to take part in both flights, via Iceland and Greenland, to the North Pole. Based on reference stations at Thule Air Base, integer ambiguity resolution was accomplished, on-the-fly, and centimetric level navigation maintained throughout the flights. Earlier trials detailed in the paper demonstrate that the technique can resolve integer ambiguities on-the-fly within a few seconds over a baseline length of approximately 134 km, resulting in an accuracy of 12 cm. The majority of the residual error source for this being the ionosphere.


2013 ◽  
Vol 66 (3) ◽  
pp. 335-348 ◽  
Author(s):  
Weiming Tang ◽  
Xiaolin Meng ◽  
Chuang Shi ◽  
Jingnan Liu

The average inter-station distances in most established network Real Time Kinematic (RTK) systems are constrained to around 50 km. A sparse network RTK system with an average inter-station distance of up to 300 km would have many appealing advantages over a conventional one, including a significant reduction in the development and maintenance costs. The first part of this paper introduces the key approaches for sparse network RTK positioning technology. These include long-range reference baseline ambiguity resolution and real-time kinematic ambiguity resolution for the rover receivers. The proposed method for long-range kinematic ambiguity resolution can overcome the network weaknesses through three procedures: application of the interpolated corrections from the sparse network only to wide-lane combination; searching the ambiguities of wide-lane combination; and searching L1 ambiguities with wide-lane combination and ionosphere-free observables. To test these techniques, a network including ten reference stations was created from the Ordnance Survey's Network (OS NetTM) that covers the whole territory of the United Kingdom (UK). The average baseline length of this sparse network is about 300 km. To assess the positioning performance, nine rover stations situated inside and outside the network were also selected from the OS Net™. Finally, the accuracy of interpolated corrections, the positioning accuracy and the initialization time required for precise positioning were estimated and analysed. From the observed performance of each rover receiver, and the accuracy of interpolated network corrections, it can be concluded that it is feasible to use a sparse reference station network with an average inter-station distance up to 300 km for achieving similar performance to traditional network RTK positioning. The proposed approach can provide more cost-efficient use of network RTK (NRTK) positioning for engineering and environmental applications that are currently being delivered by traditional network RTK positioning technology.


2021 ◽  
Vol 13 (14) ◽  
pp. 2680
Author(s):  
Søren Skaarup Larsen ◽  
Anna B. O. Jensen ◽  
Daniel H. Olesen

GNSS signals arriving at receivers at the surface of the Earth are weak and easily susceptible to interference and jamming. In this paper, the impact of jamming on the reference station in carrier phase-based relative baseline solutions is examined. Several scenarios are investigated in order to assess the robustness of carrier phase-based positioning towards jamming. Among others, these scenarios include a varying baseline length, the use of single- versus dual-frequency observations, and the inclusion of the Galileo and GLONASS constellations to a GPS only solution. The investigations are based on observations recorded at physical reference stations in the Danish TAPAS network during actual jamming incidents, in order to realistically evaluate the impact of real-world jamming on carrier phase-based positioning accuracy. The analyses performed show that, while there are benefits of using observations from several frequencies and constellations in positioning solutions, special care must be taken in solution processing. The selection of which GNSS constellations and observations to include, as well as when they are included, is essential, as blindly adding more jamming-affected observations may lead to worse positioning accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Yanlong Chen ◽  
Jincheng Fan ◽  
Guobin Chang ◽  
Siyu Zhang

GNSS (global navigation satellite system) compass is a low-cost, high-precision, and temporally stable north-finding technique. While the nonlinear baseline length constraint is widely known to be important in ambiguity resolution of GNSS compass, its direct effect on yaw angle estimation is theoretically analyzed in this work. Four different methods are considered with different ways in which the length constraint is made use of as follows: one without considering the constraints, one with simple scaling, one with indirect statistical scaling, and one with direct statistical scaling. It is found that simple scaling does not have any effect on yaw estimation; indirect and direct statistical scalings are equivalent to each other with both being able to increase the precision. The analysis and the conclusion developed in this work can go in parallel for the case of the tilt angle estimation.


2008 ◽  
Vol 62 (1) ◽  
pp. 151-166 ◽  
Author(s):  
Mardina Abdullah ◽  
Hal J. Strangeways ◽  
David M. A. Walsh

Ambiguity resolution is essential for precise range determination. As it is difficult to process, a good ionospheric model is essential to get unambiguous results or to reduce time to solve the ambiguities. In this paper, a developed model to determine the differential ionospheric error to sub-centimetre accuracy is described. As a function of elevation angle and TEC, the model is applicable at any location and only requires a single frequency receiver provided the TEC over the reference station is known. It has been evaluated using real GPS measurements at spaced stations in Glasgow (UK) and Stirling (UK), where the results showed good correlation. It was found that the variance ratio and reference variance of the ambiguity resolution rate and the quality of the differential positioning solution are improved. Significant improvements of more than 50% have also been found by correcting the differential ionospheric delay in the measurements for the estimated positions.


2017 ◽  
Vol 6 (2) ◽  
pp. 46 ◽  
Author(s):  
Shengli Wang ◽  
Jian Deng ◽  
Xiushan Lu ◽  
Ziyuan Song ◽  
Ying Xu

Sign in / Sign up

Export Citation Format

Share Document