Spatial and Temporal Change of Land Use/Cover Change in Hebei Bohai Rim for Recent 40 Years

2014 ◽  
Vol 955-959 ◽  
pp. 4002-4008 ◽  
Author(s):  
Jing Chen ◽  
Mei Chen Fu ◽  
Jing Wei

Based on the remote sensing image data of 1970, 1980, 1990, 2000 and 2008, the transfer matrix of land use/cover change were extracted using ArcGIS software, and the paper analyzed the spatial and temporal change of land use/cover change using barycenter transfer model. Results showed that: (1) From 1970 to 2008, cultivated land had been dominated land use type, followed by water area, construction land and unexploited land, and there was small proportion of forest land and grass land; forest land, water area, construction land and unexploited land were increased, and cultivated land and grass land were decreased; the conversions among cultivated land, water area and unexploited land were more closely. (2) The study on barycenter transfer model indicated that from 1970 to 2008, the barycenter transfer direction of cultivated land and construction land was north by west, and the barycenter transfer direction of forest land and unexploited land was south by west, and the barycenter transfer direction of grass land was south by east, with the maximum distance; and that of water area was north by east.

2014 ◽  
Vol 692 ◽  
pp. 115-120
Author(s):  
Shuai Shi ◽  
Zhi Hui Chen ◽  
Ji Qi ◽  
Yun Liu

Based on land use data and social economy data in 1999 and 2005, this article analyzed the spatial-temporal characteristics and driving factors of the land use change in Shunyi district by GIS technology and logistic regression analysis method. The result showed that transformation among different land use was dramatically changed from 1999 to 2005, such as the increase of construction land and the decrease of cultivated land and water area. Land transfer was mainly cultivated land to construction land, forest land, garden land, other land use; forest land to grass land and water area to cultivated land. The area of land changed from cultivated land to construction land was 14250.2hm2, and the ratio of the change is 20.09%; the changed land area from forest land to grass land was 887.6hm2 with 17.85% of changed ratio; the transformation area from water area to agricultural land was 1099.7hm2 and 23.75% of transformation ratio. The development of secondary and tertiary industry is the major driving factor of land use change from cultivated land to construction land, while the major reason for the changes from forest land to grass land and from water area to cultivated land was that the Caobai river has been dried up.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Qiao Chen ◽  
Yan Mao ◽  
Alastair M. Morrison

This research used transfer matrix, dynamic attitude, and a linear regression model to investigate the characteristics of land-use change and evolution of ecological service values and their impacts on Wuhan’s visitor economy. The results showed that: (1) the land-use scale in the Wuhan metropolitan area changed significantly from 1990 to 2018. The area of arable land, forest land, and grassland decreased at a faster rate, whereas that of water and construction land continued to increase; (2) there were differences in the dynamic attitudes of land-use at different stages. The dynamic attitude of construction land-use changed the most with cultivated land, water area, forest land, unused land, and grassland. From 1990 to 2005, land-use change exhibited a relatively gentle trend, whereas from 2005 to 2020, it accelerated; (3) although land-use regulation service, support service, and cultural service values positively responded to tourism economic growth, their influences were dissimilar. This study clarifies the effects of urban land-use on tourism economic development and provides a reference for its effective control.


2021 ◽  
Author(s):  
Sheng Li ◽  
Bin Dong ◽  
Xiang Gao ◽  
Haifeng Xu ◽  
Chunqiu Ren ◽  
...  

Abstract Chongming Dongtan is an important habitat for international migratory birds. It is of great significance to study its land use and habitat quality change for rare waterfowl protection and ecological environment restoration. Based on the land use data in 2002, 2012 and 2020, this paper analyzes the relationship between land use change and habitat quality evolution in Chongming Dongtan in recent 18 years by using InVEST model, land use dynamic degree and land use degree index. The results show that the main types of land use in the study area are water area and cultivated land, followed by woodland, reed beach, grass beach, bare beach and construction land. Among them, bare beach and construction land have changed dramatically, the former continuing to decrease while the latter continuing to increase. And the increasing speed began to slow down after 2012, and the increasing part was mainly from the surrounding cultivated land. Secondly, in terms of time change, the degradation of habitat quality in Chongming Dongtan has been gradually improved from aggravating trend in the past 18 years. In terms of spatial distribution, the habitat degradation degree of Chongming Dongtan is higher in the east and lower in the west, spreading from the center to the surrounding. Based on this, the change of land use and the interference of human activities are the important reasons for the change of ecological environment quality.


2021 ◽  
Author(s):  
Zhonghua he ◽  
Cuiwei Zhao ◽  
Hong Liang ◽  
Zhaohui Yang

Abstract As we all know, the drought occurrence indicates that there is no rainfall or little rainfall in a certain period. However, the no or little rainfall does not mean that the droughts must be occur, and the occurrence of droughts shows a certain lag in the different areas. This paper analyzes the characteristics of watershed lagged effects and human activities in Central Guizhou of China (CGC) by the Lagged Index (LI) and Landscape Index (LI) based on the land use data, rainfall and runoff data during the periods of 1971–2016.The results show that ①the influence difference of the same land use type on the lagged intensity was particularly significant(P < 0.001)in the different ages (1970s-2010s). Among them, it gradually increased for the impacts of the wood land, grass land and cultivated land on the lagged intensity with the increasing of ages, and reached the maximum in the 2000s, and reached the maximum in the 2000s, while it did not change significantly for the water land and construction land.②The impact of land use type transfer on watershed lagged effects is particularly significant (P < 0.001).Among them, it gradually increases for the wood land transfer with the prolongation of lagged periods, and reaches the maximum for the construction land transfer in the lag-1 period (Xt−1), and is not significant for the rest type transfer.③The impact differences of the principal components (Zs) on watershed lagged effects are particularly significant for the morphological characteristics of land use types in different lagged periods (Xt−0-Xt−3), and different ages (1970s-2010s), as well as the different time scales (1–12 months). Among them, it is the largest for the impact of grass land and water land on watershed lagged intensity, and gradually increases with the increasing of time scales (the maximum in the 9-month scale), followed by the wood land and cultivated land with the maximum in the 9- and 6- month scales, respectively. And it is the smallest for the construction land, and gradually increases with the increasing of time scales (the maximum in the 9-month scale).


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


2020 ◽  
Vol 198 ◽  
pp. 04026
Author(s):  
Liyan Wang ◽  
Chao Chen ◽  
Kai Wang

It is an effective method to study the value change of ecological services based on land use and cover change information. This paper analyzed the land use and cover change information in the research area, which is based on the remote sensing images and social statistics data of 2005, 2010, and 2015, and then, quantitative estimation of the ecosystem service value was performed. Yangtze-Huaihe river basin, China is a fragile ecological area, which is selected as the research area. During 2005-2015, the area of cultivated land and construction land was the main land use types in the study area, the land use and cover change in the study area were obvious, which was characterized by the increasing of construction land area and the decreasing of cultivated land area, and the total ecosystem services value in the research area has been decreasing continuously, the value from 34.376 billion yuan in 2005 to 26.161 billion yuan in 2015.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yeneayehu Fenetahun ◽  
Wang Yong-dong ◽  
Yuan You ◽  
Xu Xinwen

Abstract Background The gradual conversion of rangelands into other land use types is one of the main challenges affecting the sustainable management of rangelands in Teltele. This study aimed to examine the changes, drivers, trends in land use and land cover (LULC), to determine the link between the Normalized Difference Vegetation Index (NDVI) and forage biomass and the associated impacts of forage biomass production dynamics on the Teltele rangelands in Southern Ethiopia. A Combination of remote sensing data, field interviews, discussion and observations data were used to examine the dynamics of LULC between 1992 and 2019 and forage biomass production. Results The result indicate that there is a marked increase in farm land (35.3%), bare land (13.8%) and shrub land (4.8%), while the reduction found in grass land (54.5%), wet land (69.3%) and forest land (10.5%). The larger change in land observed in both grassland and wetland part was observed during the period from 1995–2000 and 2015–2019, this is due to climate change impact (El-Niño) happened in Teltele rangeland during the year 1999 and 2016 respectively. The quantity of forage in different land use/cover types, grass land had the highest average amount of forage biomass of 2092.3 kg/ha, followed by wetland with 1231 kg/ha, forest land with 1191.3 kg/ha, shrub land with 180 kg/ha, agricultural land with 139.5 kg/ha and bare land with 58.1 kg/ha. Conclusions The significant linkage observed between NDVI and LULC change types (when a high NDVI value, the LULC changes also shows positive value or an increasing trend). In addition, NDVI value directly related to the greenness status of vegetation occurred on each LULC change types and its value directly linkage forage biomass production pattern with grassland land use types. 64.8% (grass land), 43.3% (agricultural land), 75.1% (forest land), 50.6% (shrub land), 80.5% (bare land) and 75.5% (wet land) more or higher dry biomass production in the wet season compared to the dry season.


2019 ◽  
Vol 118 ◽  
pp. 03045
Author(s):  
Qian Wang ◽  
Jinlu Li ◽  
Zhongya Liang

Ecological land use is an important component of ecosystem. This study presents spatial and temporal pattern evolution characteristics of ecological land for the period from 2009 to 2017, based on GIS technology and mathematical statistics. The results show that ecological land structure is stable, amount tends to decrease, average annual decrease of 21, 000 hm2. Ecological land types were mainly transformed into farmland and urban land, Internal transformed mainly between woodland and grassland. Spatial aggregation were existed, Aggregation degree: forest land > grassland > water area and wetland > desert. But high concentration areas (“HH” related area) is reduced from 11 counties to 9 counties, and low concentration areas (“LL” related areas) increased from 37 counties to 40 counties, from 2009 to 2017. According to the results, proposals for ecological land use were put forward.


2014 ◽  
Vol 884-885 ◽  
pp. 694-697 ◽  
Author(s):  
Dan Hui Qi ◽  
Zhi Qin Liu

On the basis of soil physical properties of three different land use types at western Yunnan plateau, the soil moisture infiltration characteristics in these three land use types were studied with the advanced double-rings method. The results showed that there were differences on soil bulk density, soil porosity, initial soil water infiltration rate and stable soil water infiltration rate. The bulk density of dry land is higher than that of forest land and grass land, which results in the physical properties and structure of forest land soil are better than those of non-forest land. For the initial infiltration, its order from high to low is forest land, dry land and grass land. Among different stands, it is showed that from the average infiltration rate and steady infiltration rate, its order from high to low was forest land, grass land and dry land.


2020 ◽  
Vol 9 (4) ◽  
pp. 232 ◽  
Author(s):  
Yongqing Zhao ◽  
Rendong Li ◽  
Mingquan Wu

Current land cover research focuses primarily on spatial changes in land cover and the driving forces behind these changes. Among such forces is the influence of policy, which has proven difficult to measure, and no quantitative research has been conducted. On the basis of previous studies, we took Hubei Province as the research area, using remote sensing (RS) images to extract land cover change data using a single land use dynamic degree and a comprehensive land use dynamic degree to study land cover changes from 2000 to 2015. Then, after introducing the Baidu Index (BDI), we explored its relationship with land cover change and built a tool to quantitatively measure the impact of changes in land cover. The research shows that the key search terms in the BDI are ‘cultivated land occupation tax’ and ‘construction land planning permit’, which are closely related to changes in cultivated land and construction land, respectively. Cultivated land and construction land in all regions of Hubei Province are affected by policy measures with the effects of policy decreasing the greater the distance from Wuhan, while Wuhan is the least affected region.


Sign in / Sign up

Export Citation Format

Share Document