scholarly journals Study On Spatio-Temporal Evolution of Habitat Quality Based On Land-Use Change In Chongming Dongtan, China

Author(s):  
Sheng Li ◽  
Bin Dong ◽  
Xiang Gao ◽  
Haifeng Xu ◽  
Chunqiu Ren ◽  
...  

Abstract Chongming Dongtan is an important habitat for international migratory birds. It is of great significance to study its land use and habitat quality change for rare waterfowl protection and ecological environment restoration. Based on the land use data in 2002, 2012 and 2020, this paper analyzes the relationship between land use change and habitat quality evolution in Chongming Dongtan in recent 18 years by using InVEST model, land use dynamic degree and land use degree index. The results show that the main types of land use in the study area are water area and cultivated land, followed by woodland, reed beach, grass beach, bare beach and construction land. Among them, bare beach and construction land have changed dramatically, the former continuing to decrease while the latter continuing to increase. And the increasing speed began to slow down after 2012, and the increasing part was mainly from the surrounding cultivated land. Secondly, in terms of time change, the degradation of habitat quality in Chongming Dongtan has been gradually improved from aggravating trend in the past 18 years. In terms of spatial distribution, the habitat degradation degree of Chongming Dongtan is higher in the east and lower in the west, spreading from the center to the surrounding. Based on this, the change of land use and the interference of human activities are the important reasons for the change of ecological environment quality.

Author(s):  
Qinglong Ding ◽  
Yang Chen ◽  
Lingtong Bu ◽  
Yanmei Ye

The past decades were witnessing unprecedented habitat degradation across the globe. It thus is of great significance to investigate the impacts of land use change on habitat quality in the context of rapid urbanization, particularly in developing countries. However, rare studies were conducted to predict the spatiotemporal distribution of habitat quality under multiple future land use scenarios. In this paper, we established a framework by coupling the future land use simulation (FLUS) model with the Intergrated Valuation of Environmental Services and Tradeoffs (InVEST) model. We then analyzed the habitat quality change in Dongying City in 2030 under four scenarios: business as usual (BAU), fast cultivated land expansion scenario (FCLE), ecological security scenario (ES) and sustainable development scenario (SD). We found that the land use change in Dongying City, driven by urbanization and agricultural reclamation, was mainly characterized by the transfer of cultivated land, construction land and unused land; the area of unused land was significantly reduced. While the habitat quality in Dongying City showed a degradative trend from 2009 to 2017, it will be improved from 2017 to 2030 under four scenarios. The high-quality habitat will be mainly distributed in the Yellow River Estuary and coastal areas, and the areas with low-quality habitat will be concentrated in the central and southern regions. Multi-scenario analysis shows that the SD will have the highest habitat quality, while the BAU scenario will have the lowest. It is interesting that the ES scenario fails to have the highest capacity to protect habitat quality, which may be related to the excessive saline alkali land. Appropriate reclamation of the unused land is conducive to cultivated land protection and food security, but also improving the habitat quality and giving play to the versatility and multidimensional value of the agricultural landscape. This shows that the SD of comprehensive coordination of urban development, agricultural development and ecological protection is an effective way to maintain the habitat quality and biodiversity.


2014 ◽  
Vol 692 ◽  
pp. 115-120
Author(s):  
Shuai Shi ◽  
Zhi Hui Chen ◽  
Ji Qi ◽  
Yun Liu

Based on land use data and social economy data in 1999 and 2005, this article analyzed the spatial-temporal characteristics and driving factors of the land use change in Shunyi district by GIS technology and logistic regression analysis method. The result showed that transformation among different land use was dramatically changed from 1999 to 2005, such as the increase of construction land and the decrease of cultivated land and water area. Land transfer was mainly cultivated land to construction land, forest land, garden land, other land use; forest land to grass land and water area to cultivated land. The area of land changed from cultivated land to construction land was 14250.2hm2, and the ratio of the change is 20.09%; the changed land area from forest land to grass land was 887.6hm2 with 17.85% of changed ratio; the transformation area from water area to agricultural land was 1099.7hm2 and 23.75% of transformation ratio. The development of secondary and tertiary industry is the major driving factor of land use change from cultivated land to construction land, while the major reason for the changes from forest land to grass land and from water area to cultivated land was that the Caobai river has been dried up.


2020 ◽  
Vol 12 (23) ◽  
pp. 10123
Author(s):  
Dong-jin Lee ◽  
Seong Woo Jeon

This study predicts future land-use changes and the resulting changes in habitat quality, suggesting a method for establishing land-use management to ensure sustainable wildlife habitats. The conservation effects were verified in terms of wild animal habitat quality according to the designation of protected areas. Land-use change until 2050 was predicted using the Dyna-Conversion of Land Use Change and its effects (Dyna-CLUE) model for Jeju Island, Korea, and the change in the quality of roe deer habitats was predicted using the Integrated Valuation and Environmental Services and Tradeoffs (InVEST) model. Results indicate that, compared to 2030, urbanized area increased by 42.55 km2, farmland decreased by 81.36 km2, and natural area increased by 38.82 km2 by 2050. The average habitat quality on Jeju Island was predicted to decrease from 0.306 in 2030 to 0.303 in 2050. The average habitat quality ranged from 0.477 in 2030 to 0.476 in 2050 in protected areas and 0.281 in 2030 to 0.278 in 2050 outside protected areas. Habitat quality in protected areas was relatively high, and its reduction was limited. Areas with lower habitat quality need approaches such as expanding greenery and improving its quality. By establishing appropriate land-use plans by predicting habitat quality, wildlife habitats can be better maintained and protected, which is a primary goal of green infrastructure.


2014 ◽  
Vol 955-959 ◽  
pp. 4002-4008 ◽  
Author(s):  
Jing Chen ◽  
Mei Chen Fu ◽  
Jing Wei

Based on the remote sensing image data of 1970, 1980, 1990, 2000 and 2008, the transfer matrix of land use/cover change were extracted using ArcGIS software, and the paper analyzed the spatial and temporal change of land use/cover change using barycenter transfer model. Results showed that: (1) From 1970 to 2008, cultivated land had been dominated land use type, followed by water area, construction land and unexploited land, and there was small proportion of forest land and grass land; forest land, water area, construction land and unexploited land were increased, and cultivated land and grass land were decreased; the conversions among cultivated land, water area and unexploited land were more closely. (2) The study on barycenter transfer model indicated that from 1970 to 2008, the barycenter transfer direction of cultivated land and construction land was north by west, and the barycenter transfer direction of forest land and unexploited land was south by west, and the barycenter transfer direction of grass land was south by east, with the maximum distance; and that of water area was north by east.


2021 ◽  
Author(s):  
Lijia Zhang ◽  
Xu Zhou ◽  
Yan Zhou ◽  
Ji Zhou ◽  
Jiwang Guo ◽  
...  

Abstract Coal plays a crucial role in global economic development, which is still the most common and widely distributed fossil fuel in the world. As the world's largest developing country, China's mining and utilization of coal resources make great contributions to the rapid growth of China's economy. Inner Mongolia lies in the arid and semi-arid areas of China, its ecological environment is very fragile. The exploitation of opencast mining seriously hinders the sustainable use of regional land and the promotion of residents' well-being. This paper uses 2000, 2005, 2010, 2015 and 2020 remote sensing imageries, Based on ENVI, using a random forest algorithm to divide the land utilization type into construction land, vegetation, cultivated land, bare land and water area,and analyses the evolution characteristics of land use and ecosystem service value during the past 20 years. The results showed that: (1) Between 2000 and 2020, the construction land, vegetation and water of mining area were reduced, the bare land and cultivated land showed an increasing trend. The largest ratio changed is bare land, the smallest changed rate is water area. (2) The total ecosystem service value of the mining area reduced from10.939 billion yuan to 9.527 billion yuan. Among them, vegetation ecosystem service value is the highest, followed by cultivated land and water, and bare land ecosystem service value is the lowest. (3) From the spatial scale, the total ecosystem service value of the Shengli mining area decreases year by year, which shows that the land-use change in the mining area does have an impact on the ecosystem service value.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Qiao Chen ◽  
Yan Mao ◽  
Alastair M. Morrison

This research used transfer matrix, dynamic attitude, and a linear regression model to investigate the characteristics of land-use change and evolution of ecological service values and their impacts on Wuhan’s visitor economy. The results showed that: (1) the land-use scale in the Wuhan metropolitan area changed significantly from 1990 to 2018. The area of arable land, forest land, and grassland decreased at a faster rate, whereas that of water and construction land continued to increase; (2) there were differences in the dynamic attitudes of land-use at different stages. The dynamic attitude of construction land-use changed the most with cultivated land, water area, forest land, unused land, and grassland. From 1990 to 2005, land-use change exhibited a relatively gentle trend, whereas from 2005 to 2020, it accelerated; (3) although land-use regulation service, support service, and cultural service values positively responded to tourism economic growth, their influences were dissimilar. This study clarifies the effects of urban land-use on tourism economic development and provides a reference for its effective control.


Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 857
Author(s):  
Mengyao Li ◽  
Yong Zhou ◽  
Pengnan Xiao ◽  
Yang Tian ◽  
He Huang ◽  
...  

Regional land use change and ecological security are important fields and have been popular issues in global change research in recent years. Regional habitat quality is also an important embodiment of the service function and health of ecosystems. Taking Shiyan City of Hubei Province as an example, the spatiotemporal differences in habitat quality in Shiyan City were evaluated using the habitat quality module of the InVEST model and GIS spatial analysis method based on DEM and land use data from 2000, 2005, 2010, 2015, and 2020. According to the habitat quality index values, the habitats were divided into four levels indicating habitat quality: I (very bad), II (bad), III (good), and IV (excellent), and the topographic gradient effect of habitat quality was studied using the topographic position index. The results show the following. (1) The habitat quality of Shiyan City showed relatively high and obvious spatial heterogeneity overall and, more specifically, was high in the northwest and southwest, moderate in the center, and low in the northeast. The higher quality habitats (levels III, IV) were mainly distributed in mountain and hill areas and water areas, while those with lower quality habitats (levels I, II) were mainly distributed in agricultural urban areas. (2) From 2000 to 2020, the overall average habitat quality of Shiyan City first increased, then decreased, and then increased again. Additionally, the habitat area increased with an improvement in the level. There was a trend in habitat transformation moving from low to high quality level, showing a spatial pattern of “rising in the southwest and falling in the northeast”. (3) The habitat quality in the water area and woodland area was the highest, followed by grassland, and that of cultivated land was the lowest. From 2000 to 2020, the habitat quality of cultivated land, woodland, and grassland decreased slightly, while the habitat quality of water increased significantly. (4) The higher the level of the topographic position index, the smaller the change range of land use types with time. The terrain gradient effect of habitat quality was significant. With the increase in terrain level, the average habitat quality correspondingly improved, but the increasing range became smaller and smaller. These results are helpful in revealing the spatiotemporal evolution of habitat quality caused by land use changes in Shiyan City and can provide a scientific basis for the optimization of regional ecosystem patterns and land use planning and management, and they are of great significance for planning the rational and sustainable use of land resources and the construction of an ecological civilization.


Author(s):  
Jing Guan ◽  
Peng Yu

Continuous coal mining results in dramatic regional land use change, and significantly influences the sustainable development of coal resource-based cities. Present studies pay little attention to the characteristics and regularities of land use change in coal resource-based cities, caused by underground coal mining in high groundwater areas. Based on the Landsat remote sensing images of 1999, 2000, 2010, and 2018 of Huaibei City, a typical coal resource-based city of a high ground water area on the North China Plain, this paper applies the dynamic degree and transition matrix of land use to analyze the land use change characteristics, and identify the regularity between land use type and coal mining production in this coal resource-based city. Results show that the land use change in the research area presents an overall characteristic of a constant increase in water area, urban construction land, and rural settlement land, and a continuous decrease in cultivated land. Cultivated land is converted into a water area, urban construction land, and rural settlement land, and rural settlement land and cultivated land are converted bidirectionally. The land use change in this coal resource-based city demonstrates significant reliance on coal resources, and coal mining is significantly related to the area of cultivated land, water area, and rural settlement land, which demonstrates that continuous large-scale coal mining results in damage to cultivated land, a decrease in rural settlement land, and an increase in water area. The research result contributes to the sustainable land use of coal resource-based cities.


2020 ◽  
Vol 165 ◽  
pp. 02028
Author(s):  
Yi Luo ◽  
Shuang Liu ◽  
Cheng Zhang ◽  
Ruiying Ning ◽  
Jiajin Zhou

In order to evaluate the change of ecosystem service value in Chengdu, GIS technology was used to obtain the land use type data of Chengdu from 2009 to 2018. The equivalent factor method was used as the core evaluation method, and an ecosystem value evaluation model was established to explore the impact of various land use types on ecosystem service value. The results show that: (1) the trend of land use change is that both the area and the proportion of land use change in different degrees. The area of cultivated land, water area and unused land are greatly reduced, and the area of construction land expands rapidly, mainly through the occupation of cultivated land and unused land. (2) The intensity of land use in Chengdu is greater and continues to increase, and the contribution rate of construction land is larger, which indicates that the land use structure is developing towards the structural direction of mainly construction land. (3) Changes in ecosystem service value are not only related to land use structure, but also to the economic development, willingness to pay and ability of the whole society. (4) Ecosystem service value is negatively correlated with construction land and unused land; it is positively correlated with cultivated land, forest land and grassland. Generally speaking, Chengdu’s land use change has not caused obvious damage to the ecosystem, but the impact of human lifestyle on the environment in the process of economic development cannot be ignored. The growth of construction land area should be appropriately controlled, ecological land should be protected, and the sustainable development of social-economic-ecological benefits should be realized.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


Sign in / Sign up

Export Citation Format

Share Document