Characteristics of Landscape (Land Use) Change and its Driving Force in County - A Case Study of Shunyi District of Beijing

2014 ◽  
Vol 692 ◽  
pp. 115-120
Author(s):  
Shuai Shi ◽  
Zhi Hui Chen ◽  
Ji Qi ◽  
Yun Liu

Based on land use data and social economy data in 1999 and 2005, this article analyzed the spatial-temporal characteristics and driving factors of the land use change in Shunyi district by GIS technology and logistic regression analysis method. The result showed that transformation among different land use was dramatically changed from 1999 to 2005, such as the increase of construction land and the decrease of cultivated land and water area. Land transfer was mainly cultivated land to construction land, forest land, garden land, other land use; forest land to grass land and water area to cultivated land. The area of land changed from cultivated land to construction land was 14250.2hm2, and the ratio of the change is 20.09%; the changed land area from forest land to grass land was 887.6hm2 with 17.85% of changed ratio; the transformation area from water area to agricultural land was 1099.7hm2 and 23.75% of transformation ratio. The development of secondary and tertiary industry is the major driving factor of land use change from cultivated land to construction land, while the major reason for the changes from forest land to grass land and from water area to cultivated land was that the Caobai river has been dried up.

2014 ◽  
Vol 955-959 ◽  
pp. 4002-4008 ◽  
Author(s):  
Jing Chen ◽  
Mei Chen Fu ◽  
Jing Wei

Based on the remote sensing image data of 1970, 1980, 1990, 2000 and 2008, the transfer matrix of land use/cover change were extracted using ArcGIS software, and the paper analyzed the spatial and temporal change of land use/cover change using barycenter transfer model. Results showed that: (1) From 1970 to 2008, cultivated land had been dominated land use type, followed by water area, construction land and unexploited land, and there was small proportion of forest land and grass land; forest land, water area, construction land and unexploited land were increased, and cultivated land and grass land were decreased; the conversions among cultivated land, water area and unexploited land were more closely. (2) The study on barycenter transfer model indicated that from 1970 to 2008, the barycenter transfer direction of cultivated land and construction land was north by west, and the barycenter transfer direction of forest land and unexploited land was south by west, and the barycenter transfer direction of grass land was south by east, with the maximum distance; and that of water area was north by east.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 1
Author(s):  
Qiao Chen ◽  
Yan Mao ◽  
Alastair M. Morrison

This research used transfer matrix, dynamic attitude, and a linear regression model to investigate the characteristics of land-use change and evolution of ecological service values and their impacts on Wuhan’s visitor economy. The results showed that: (1) the land-use scale in the Wuhan metropolitan area changed significantly from 1990 to 2018. The area of arable land, forest land, and grassland decreased at a faster rate, whereas that of water and construction land continued to increase; (2) there were differences in the dynamic attitudes of land-use at different stages. The dynamic attitude of construction land-use changed the most with cultivated land, water area, forest land, unused land, and grassland. From 1990 to 2005, land-use change exhibited a relatively gentle trend, whereas from 2005 to 2020, it accelerated; (3) although land-use regulation service, support service, and cultural service values positively responded to tourism economic growth, their influences were dissimilar. This study clarifies the effects of urban land-use on tourism economic development and provides a reference for its effective control.


2021 ◽  
Author(s):  
Sheng Li ◽  
Bin Dong ◽  
Xiang Gao ◽  
Haifeng Xu ◽  
Chunqiu Ren ◽  
...  

Abstract Chongming Dongtan is an important habitat for international migratory birds. It is of great significance to study its land use and habitat quality change for rare waterfowl protection and ecological environment restoration. Based on the land use data in 2002, 2012 and 2020, this paper analyzes the relationship between land use change and habitat quality evolution in Chongming Dongtan in recent 18 years by using InVEST model, land use dynamic degree and land use degree index. The results show that the main types of land use in the study area are water area and cultivated land, followed by woodland, reed beach, grass beach, bare beach and construction land. Among them, bare beach and construction land have changed dramatically, the former continuing to decrease while the latter continuing to increase. And the increasing speed began to slow down after 2012, and the increasing part was mainly from the surrounding cultivated land. Secondly, in terms of time change, the degradation of habitat quality in Chongming Dongtan has been gradually improved from aggravating trend in the past 18 years. In terms of spatial distribution, the habitat degradation degree of Chongming Dongtan is higher in the east and lower in the west, spreading from the center to the surrounding. Based on this, the change of land use and the interference of human activities are the important reasons for the change of ecological environment quality.


2014 ◽  
Vol 955-959 ◽  
pp. 3994-3997
Author(s):  
Yu Yan Zhao

Based on the support of GIS tools and land database, this paper put the LUCC theory into practice. The ArcGIS space analysis and transition matrix are used for the research of land use change of Dalian city through the 20 years’ period. Result shows that, from the year 1990 to the year 2010, enormous transformation has happened in land use type, of which the overall characteristics of transformation are reduction of wood land and grass land, with the increasing of construction land and water area. The trend of city construction area’s enlarging and agricultural land resources’ reducing is very obvious.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yeneayehu Fenetahun ◽  
Wang Yong-dong ◽  
Yuan You ◽  
Xu Xinwen

Abstract Background The gradual conversion of rangelands into other land use types is one of the main challenges affecting the sustainable management of rangelands in Teltele. This study aimed to examine the changes, drivers, trends in land use and land cover (LULC), to determine the link between the Normalized Difference Vegetation Index (NDVI) and forage biomass and the associated impacts of forage biomass production dynamics on the Teltele rangelands in Southern Ethiopia. A Combination of remote sensing data, field interviews, discussion and observations data were used to examine the dynamics of LULC between 1992 and 2019 and forage biomass production. Results The result indicate that there is a marked increase in farm land (35.3%), bare land (13.8%) and shrub land (4.8%), while the reduction found in grass land (54.5%), wet land (69.3%) and forest land (10.5%). The larger change in land observed in both grassland and wetland part was observed during the period from 1995–2000 and 2015–2019, this is due to climate change impact (El-Niño) happened in Teltele rangeland during the year 1999 and 2016 respectively. The quantity of forage in different land use/cover types, grass land had the highest average amount of forage biomass of 2092.3 kg/ha, followed by wetland with 1231 kg/ha, forest land with 1191.3 kg/ha, shrub land with 180 kg/ha, agricultural land with 139.5 kg/ha and bare land with 58.1 kg/ha. Conclusions The significant linkage observed between NDVI and LULC change types (when a high NDVI value, the LULC changes also shows positive value or an increasing trend). In addition, NDVI value directly related to the greenness status of vegetation occurred on each LULC change types and its value directly linkage forage biomass production pattern with grassland land use types. 64.8% (grass land), 43.3% (agricultural land), 75.1% (forest land), 50.6% (shrub land), 80.5% (bare land) and 75.5% (wet land) more or higher dry biomass production in the wet season compared to the dry season.


2019 ◽  
Vol 118 ◽  
pp. 03045
Author(s):  
Qian Wang ◽  
Jinlu Li ◽  
Zhongya Liang

Ecological land use is an important component of ecosystem. This study presents spatial and temporal pattern evolution characteristics of ecological land for the period from 2009 to 2017, based on GIS technology and mathematical statistics. The results show that ecological land structure is stable, amount tends to decrease, average annual decrease of 21, 000 hm2. Ecological land types were mainly transformed into farmland and urban land, Internal transformed mainly between woodland and grassland. Spatial aggregation were existed, Aggregation degree: forest land > grassland > water area and wetland > desert. But high concentration areas (“HH” related area) is reduced from 11 counties to 9 counties, and low concentration areas (“LL” related areas) increased from 37 counties to 40 counties, from 2009 to 2017. According to the results, proposals for ecological land use were put forward.


Sensor Review ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 844-856
Author(s):  
Zhenzhen Zhao ◽  
Jiandi Feng

Purpose The purpose of this paper is to analyze the characteristics of spatio-temporal dynamics and the evolution of land use change is essential for understanding and assessing the status and transition of ecosystems. Such analysis, when applied to Horqin sandy land, can also provide basic information for appropriate decision-making. Design/methodology/approach By integrating long time series Landsat imageries and geographic information system (GIS) technology, this paper explored the spatio-temporal dynamics and evolution-induced land use change of the largest sandy land in China from 1983 to 2016. Accurate and consistent land use information and land use change information was first extracted by using the maximum likelihood classifier and the post-classification change detection method, respectively. The spatio-temporal dynamics and evolution were then analyzed using three kinds of index models: the dynamic degree model to analyze the change of regional land resources, the dynamic change transfer matrix and flow direction rate to analyze the change direction, and the barycenter transfer model to analyze the spatial pattern of land use change. Findings The results indicated that land use in Horqin sandy land during the study period changed dramatically. Vegetation and sandy land showed fluctuating changes, cropland and construction land steadily increased, water body decreased continuously, and the spatial distribution patterns of land use were generally unbalanced. Vegetation, sandy land and cropland were transferred frequently. The amount of vegetation loss was the largest. Water body loss was 473.6 km2, which accounted for 41.7 per cent of the total water body. The loss amount of construction land was only 1.0 km2. Considerable differences were noted in the rate of gravity center migration among the land use types in different periods, and the overall rate of construction land migration was the smallest. Moreover, the gravity center migration rates of the water body and sandy land were relatively high and were related to the fragile ecological environment of Horqin sandy land. Originality/value The results not only confirmed the applicability and effectiveness of the combined method of remote sensing and GIS technology but also revealed notable spatio-temporal dynamics and evolution-induced land use change throughout the different time periods (1983-1990, 1990-2000, 2000-2010, 2010-2014, 2014-2016 and 1983-2016).


2021 ◽  
Vol 271 ◽  
pp. 02017
Author(s):  
Yi Bai ◽  
Song Li ◽  
Qianqin Zuo ◽  
Wei Zhang

With the rapid development of social economy, the sustainable use of land is becoming more and more important. Based on GIS and remote sensing technology, the work processed the land use status data of Qingzhen in 2016 and 2020, obtained the dynamic change data during the period, analyzed its land use structure, quantity and degree. Finally, we used the CA-Markov model to obtain the flow direction and probability of land use type. Results showed that the rate of non-agricultural land increase, and the rate of other land reduce. Suggestions :(1) centralization of land resources and integration of urban and rural development.(2) Continue to develop characteristic industries and create new business cards for the city.(3) Pay attention to the quality of cultivated land and rationally develop unused land.


2019 ◽  
Vol 11 (7) ◽  
pp. 2122 ◽  
Author(s):  
Chao Zhang ◽  
Shuai Zhong ◽  
Xue Wang ◽  
Lei Shen ◽  
Litao Liu ◽  
...  

Coastal cities have been experiencing tremendous land use changes worldwide. Studies on the consequences of land use change in coastal cities have provided helpful information for spatial regulations and have attracted increased attention. Changes in forests and water bodies, however, have rarely been investigated, challenging the formation of a holistic pattern of land use change. In this study, we selected Ningbo, China, as a case study area and analyzed its land use change from 1990 to 2016. Random forest (RF) classification was employed to derive land use information from Landsat images. Transition matrices and a distribution index (DI) were applied to identify the major types of land use transitions and their spatial variations by site-specific attributes. The results showed that the entire time period could be divided into two stages, based on the manifestations of land use change in Ningbo: 1990–2005 and 2005–2016. During 1990–2005, construction land expanded rapidly, mainly through the occupation of agricultural land and forest, while during 2005–2016, the main change trajectory turned out to be a small net change in construction land and a net increase in agricultural land sourced from construction land, forests, and water bodies. In terms of land use change by site-specific attributes, the rapid expansion of construction land around the municipal city center during 1990–2005 was restrained, and similar amounts of land conversion between construction and agricultural use occurred during 2005–2016. During the study period, areas undergoing land use change also showed trends of moving outward from the municipal city center and the county centers located adjacent to roads and the coastline and of moving up to hilly areas with steeper slopes and higher elevations. Protecting reclaimed agricultural land, improving the efficiency of construction land, and controlling forest conversion in hilly areas are suggested as spatial regulations in Ningbo city.


Sign in / Sign up

Export Citation Format

Share Document