Research on Wear Mechanisms while Turning Titanium Alloy TC4

2010 ◽  
Vol 97-101 ◽  
pp. 1845-1848
Author(s):  
Dong Liu ◽  
Wu Yi Chen ◽  
Hong Hai Xu ◽  
Xue Ke Luo

Titanium alloys are widely used in aerospace industry due to their excellent mechanical properties. Because of their low thermal conductivity, high chemical activity, large friction coefficient and so on, such problems occur during the cutting process as high cutting temperature, large specific cutting force and serious tool wear, leading to low machining efficiency. The cutting force, forms of tool wear; wear mechanics were experimentally studied and analyzed while machining titanium alloy TC4 using carbide tools YS8 and YG8. The experimental results indicated that the tool wear of YG8 influenced cutting force not very remarkable when flank wear smaller than 0.25mm. But when the flank wear was bigger than 0.25mm, the cutting force increased rapidly with the flank wear increased. And the tool wear influenced the cutting force dramatically. The forms of tool wear during machining TC4 using carbide tool were adhesion wear, tool chipping and. The desquamation and chipping of tool caused by adhesion wear were the main reason of the tool failure.

2016 ◽  
Vol 836-837 ◽  
pp. 20-28
Author(s):  
Li Min Shi ◽  
Cheng Yang ◽  
Qi Jun Li

Titanium alloy Ti6Al4V has poor machinability, which leads to high unit cutting force and cutting temperature, rapid tool failure. In this study, the effect of the cutting speed, feed rate and cooling condition on cutting force and cutting temperature is critically analysed by turning experiment. At the same time, the relationship is established among tool wear, cutting force and cutting temperature. This investigation has shown that cutting speed is the decisive factor which increasing cutting force and cutting temperature. In the process of turning, tool wear results in high amounts of heat and mechanical stress, which leads to serious tool wear. The Minimal Quantity Lubrication reduces the frictional condition at the chip-tool, decreases cutting force and cutting temperature, and delays the tool failure.


Author(s):  
Kuan-Ming Li ◽  
Steven Y. Liang

The objective of this paper is to present a methodology to analytically model the tool flank wear rate in near-dry turning. The resulting models can serve as a basis to minimize time-consuming machining tests in predicting tool life. Analytical models, including cutting force model, cutting temperature model, and tool wear model, are presented. The cutting force model was established based on Oxley’s model with modifications for lubricating and cooling effect due to the air-oil mixture in near-dry machining. The cutting temperature was obtained by considering a moving or stationary heat source in the tool. The tool wear model contained abrasive mechanism, adhesion mechanism, and diffusion mechanism. The important factors related to this model were contact stresses and temperatures that were obtained from the cutting force model and the cutting temperature model. To develop these models, a set of cutting experiments using carbide tools on AISI 1045 steels were performed to calibrate the coefficients in the models and to verify the proposed flank wear mechanisms. The comparisons between the model-predictive flank wear and experimental results showed that the flank wear in near dry machining can be estimated well by the proposed models. It was also found that the cutting velocity was a dominant factor among the cutting conditions.


2014 ◽  
Vol 800-801 ◽  
pp. 81-86
Author(s):  
Zhen Li ◽  
Er Liang Liu ◽  
Teng Da Wang ◽  
Jiao Li ◽  
Yong Chun Zheng

The various feed rate and cutting speed have an important influence on cutting force, tool wear and chip morphology in machining titanium alloy. Cutting experiments are carried out analyzing the titanium alloy Ti6Al4V under different cutting speed and feed rate, the cutting force values are obtained. The analysis results show that the dominant wear pattern is adhesion wear and chipping. And the tool wear also has an influence on chip morphology.


2014 ◽  
Vol 800-801 ◽  
pp. 424-429
Author(s):  
Pei Rong Zhang ◽  
Zhan Qiang Liu

The paper investigates the effects of cutting edge preparation on cutting force, cutting temperature and tool wear for hard turning. An optimized characterization approach is proposed and five kinds of cemented tools with different edge preparation are adopted in the simulations by DEFROM-2DTM. The results show that both the forces and cutting temperature on the rake face climb up and then declines with the increasing of factor K (Sγ/Sα). While the temperature on flank face decrease with the increasing of the factor K. When the cutting conditions are identical, flank wear reduces while crater wear exacerbates before easing with the increasing of the factor K. The simulation results will provide valuable suggestions for optimization of cutting edge preparation for hard turning in order to obtain excellent machining quality and longer tool life.


Author(s):  
N. J. Churi ◽  
Z. C. Li ◽  
Z. J. Pei ◽  
C. Treadwell

Due to their unique properties, titanium alloys are attractive for some unique applications especially in the aerospace industry. However, it is very difficult to machine these materials cost-effectively. Although many conventional and non-conventional machining methods have been reported for machining them, no reports can be found in the literature on rotary ultrasonic machining of titanium alloys. This paper presents an experimental study on rotary ultrasonic machining of a titanium alloy. The tool wear, cutting force, and surface roughness when rotary ultrasonic machining of the titanium alloy have been investigated using different tool designs and machining conditions. The results are compared with those when machining the same material with diamond grinding.


2011 ◽  
Vol 188 ◽  
pp. 55-60
Author(s):  
J. Du ◽  
Zhan Qiang Liu

FGH95 is one kind of high-strength, thermal-resistant nickel-based superalloys fabricated by powder metallurgy (PM). It plays an increasingly important role in the development and manufacture of turbine discs. Due to the extreme toughness and work hardening characteristics of this kind of superalloy, the problem of machining FGH95 is one of ever-increasing magnitudes. This paper investigates the influence of cutting parameters on the cutting force, cutting temperature and tool wear during the end milling of PM nickel-based superalloy FGH95. The empirical formula for cutting force and cutting temperature of FGH95 are given out. Experimental results show that the cutting speed among milling parameters has the greatest influence on cutting forces and cutting temperatures. It is shown that the major tool wear mechanisms are combination interactions of abrasive wear, adhesion wear, micro-breakout and chipping.


2006 ◽  
Vol 129 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Kuan-Ming Li ◽  
Steven Y. Liang

The objective of this paper is to present physical and quantitative models for the rate of tool flank wear in turning under flood cooling conditions. The resulting models can serve as a basis to predict tool life and to plan for optimal machining process parameters. Analytical models including cutting force analysis, cutting temperature prediction, and tool wear mechanics are presented in order to achieve a thermo-mechanical understanding of the tool wear process. The cutting force analysis leverages upon Oxley’s model with modifications for lubricating and cooling effect of overhead fluid application. The cutting temperature was obtained by considering workpiece shear deformation, friction, and heat loss along with a moving or stationary heat source in the tool. The tool wear mechanics incorporate the considerations of abrasive, adhesion, and diffusion mechanisms as governed by contact stresses and temperatures. A model of built-up edge formation due to dynamic strain aging has been included to quantify its effects on the wear mechanisms. A set of cutting experiments using carbide tools on AISI 1045 steels were performed to calibrate the material-dependent coefficients in the models. Experimental cutting data were also used to validate the predictive models by comparing cutting forces, cutting temperatures, and tool lives under various process conditions. The results showed that the predicted tool lives were close to the experimental data when the built-up edge formation model appropriately captured this phenomenon in metal cutting.


2012 ◽  
Vol 522 ◽  
pp. 231-235 ◽  
Author(s):  
Yi Hang Fan ◽  
Min Li Zheng ◽  
Zhe Li ◽  
Song Tao Wang ◽  
Ying Bin Li

The machining efficiency of titanium alloy Ti6Al4V is low and the tool wear is serious. In this paper, uncoated carbide tool and two kinds of coated cemented carbide tool were used for dry turning titanium alloy. The experiments used CCD Observing System and the EDAX analysis of SEM to study tool wear mechanism and analyze the cutting performance through tool life, cutting force and cutting temperature. The results show that the main wear reasons are adhesion, diffusion and oxidation wear. For coated tool, the coating peeled off first, and then tool substrate damaged. Compared with coated carbide tool, the uncoated carbide tool with fine grain has longer tool life and lower cutting force and cutting temperature. The changes of cutting force and cutting temperature with cutting speed are not obvious when using the ccomposite coating (TiAlN and AlCrN) carbide tool. The results can help to choose tool material reasonably and control tool wear.


2013 ◽  
Vol 690-693 ◽  
pp. 2030-2035
Author(s):  
Shu Bao Yang ◽  
Hong Chao Ni ◽  
Guo Hui Zhu

Ti6Al4V alloy is widely used in the aircraft industry, marine and the commercial applications due to its excellent comprehensive properties. However, its poor machinability prevents it from application widely, and the rapid tool wear is one of the key factors. The FEM models of cutting titanium alloy are established. The effect of tool wear on chip morphology, cutting temperature and cutting force are studied. The simulation results show that: the cutting force and cutting temperature will rise with the increase of tool wear. Furthermore, the degree of chip deformation will improve, but the frequency of serrated chip tooth occurred will decrease.


Author(s):  
Yusuf Kaynak ◽  
Armin Gharibi

Titanium alloy Ti-5Al-5V-3Cr-0.5Fe (Ti-5553) is a new generation of near-beta titanium alloy that is commonly used in the aerospace industry. Machining is one of the manufacturing methods to produce parts that are made of this near-beta alloy. This study presents the machining performance of new generation near-beta alloys, namely, Ti-5553, by focusing on a high-speed cutting process under cryogenic cooling conditions and dry machining. The machining experiments were conducted under a wide range of cutting speeds, including high speeds that used liquid nitrogen (LN2) and carbon dioxide (CO2) as cryogenic coolants. The experimental data on the cutting temperature, tool wear, force components, chip breakability, dimensional accuracy, and surface integrity characteristics are presented and were analyzed to evaluate the machining process of this alloy and resulting surface characteristics. This study shows that cryogenic machining improved the machining performance of the Ti-5553 alloy by substantially reducing the tool wear, cutting temperature, and dimensional deviation of the machined parts. The cryogenic machining also produced shorter chips as compared to dry machining.


Sign in / Sign up

Export Citation Format

Share Document