Research for Combustor Based on Micro-Thermoelectric Generator Device

2010 ◽  
Vol 97-101 ◽  
pp. 2509-2513 ◽  
Author(s):  
Rui Yin Song ◽  
Xian Cheng Wang ◽  
Mei Qin Zhang

Micro-thermoelectric generator device (MTGD) is used to supply lasting electrical energy for Micro-electro-mechanical systems (MEMS). As an important part of MTGD, micro-combustor with high energy density has direct influence on the total electrical generating efficiency for MTG. D In this paper, Considering some parameters such as material, dimension, flux of fuel and shape of thermal conductive tunnel for micro-combustor, some simulation models such as thermal transfer, combustion for micro-combustor were built up, and some simulation results were got. Based upon, optimized micro flat combustors were designed and tested. The experiment results illustrated that the conduct efficiency of micro-combustor was well controlled by adjusting heat flux, and the combustor with shape of zigzag combustion tunnel has high thermal exchange efficiency in experiment models. By adjusting flux of fuel and the structure of micro premixed combustor, the heat loss of MTGD was reduced and output power was improved in a degree.

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5742
Author(s):  
Vignaswaran Veerapandiyan ◽  
Federica Benes ◽  
Theresa Gindel ◽  
Marco Deluca

Electrical energy storage systems (EESSs) with high energy density and power density are essential for the effective miniaturization of future electronic devices. Among different EESSs available in the market, dielectric capacitors relying on swift electronic and ionic polarization-based mechanisms to store and deliver energy already demonstrate high power densities. However, different intrinsic and extrinsic contributions to energy dissipations prevent ceramic-based dielectric capacitors from reaching high recoverable energy density levels. Interestingly, relaxor ferroelectric-based dielectric capacitors, because of their low remnant polarization, show relatively high energy density and thus display great potential for applications requiring high energy density properties. In this study, some of the main strategies to improve the energy density properties of perovskite lead-free relaxor systems are reviewed, including (i) chemical modification at different crystallographic sites, (ii) chemical additives that do not target lattice sites, and (iii) novel processing approaches dedicated to bulk ceramics, thick and thin films, respectively. Recent advancements are summarized concerning the search for relaxor materials with superior energy density properties and the appropriate choice of both composition and processing routes to match various applications’ needs. Finally, future trends in computationally-aided materials design are presented.


Author(s):  
Heather Lai ◽  
Chin An Tan ◽  
Yong Xu

Human walking requires sophisticated coordination of muscles, tendons, and ligaments working together to provide a constantly changing combination of force, stiffness and damping. In particular, the human knee joint acts as a variable damper, dissipating greater amounts of energy when the knee undergoes large rotational displacements during walking, running or hopping. Typically, this damping results from the dissipation, or loss, of metabolic energy. It has been proven to be possible however; to collect this otherwise wasted energy through the use of electromechanical transducers of several different types which convert mechanical energy to electrical energy. When properly controlled, this type of device not only provides desirable structural damping effects, but the energy generated can be stored for use in a wide range of applications. A novel approach to an energy harvesting knee joint damper is presented using a dielectric elastomer (DE) smart material based electromechanical transducer. Dielectric elastomers are extremely elastic materials with high electrical permittivity which operate based on electrostatic effects. By placing compliant electrodes on either side of a dielectric elastomer film, a specialized capacitor is created, which couples mechanical and electrical energy using induced electrostatic stresses. Dielectric elastomer energy harvesting devices not only have a high energy density, but the material properties are similar to that of human tissue, making it highly suitable for wearable applications. A theoretical framework for dielectric elastomer energy harvesting is presented along with a mapping of the active phases of the energy harvesting to the appropriate phases of the walking stride. Experimental results demonstrating the energy harvesting capability of a DE generator undergoing strains similar to those experienced during walking are provided for the purpose of verifying the theoretical results. The work presented here can be applied to devices for use in rehabilitation of patients with muscular dysfunction and transfemoral prosthesis as well as energy generation for able-bodied wearers.


RSC Advances ◽  
2014 ◽  
Vol 4 (89) ◽  
pp. 48220-48227 ◽  
Author(s):  
Subrata Sarkar ◽  
Samiran Garain ◽  
Dipankar Mandal ◽  
K. K. Chattopadhyay

A significant improvement of dielectric properties and toughness with electrical energy density up to 11 J cm−3 is observed in flexible PVDF–BiVO4 nanocomposite film. It underlines to use as flexible high energy density capacitors and piezoelectric based energy harvesters.


2006 ◽  
Vol 15 (1) ◽  
pp. 195-203 ◽  
Author(s):  
K. Yoshida ◽  
S. Tanaka ◽  
S. Tomonari ◽  
D. Satoh ◽  
M. Esashi

2021 ◽  
Author(s):  
Soonho Park

The objective of this thesis is to report the single vibration mode standing wave tubular piezoelectric ultrasonic motors developed. Piezoelectric motors are driven by reverse piezoelectric effects which converts an input of ultrasonic frequency of electrical energy into an output of mechanical movement. There are many advantages of piezoelectric ultrasonic motors compared to electromagnetic motors such as simple structure, high energy density, and high torque at low speed. Three prototypes are designed and fabricated. Two motors are fabricated using PZT cylindrical tube; one with PZT teeth and the other with metal teeth. A third motor using brass tube with PZT plates attached is fabricated. After design and fabrication of three prototypes, the performances of the motors are tested using a test apparatus for speed and torque.


2019 ◽  
Vol 12 (05) ◽  
pp. 1930004 ◽  
Author(s):  
Xin Cao ◽  
Huan Xia ◽  
Xiangyu Zhao

Alkaline zinc-based rechargeable batteries (AZRBs) are competitive candidates for future electrical energy storage because of their low-cost, eco-friendliness and high energy density. However, plagued by dendrites, the AZRBs suffer from drastic decay in electrochemical properties and safety. This review elucidates fundamentals of zinc dendritic formation and summarizes the strategies, including electrode design and modification, electrolyte optimization and separator improvement, for suppressing zinc dendritic growth.


Author(s):  
Jong K. Cha ◽  
Thomas Y. Lee ◽  
Yong X. Gan

Internal combustion (IC) engines typically have an efficiency of less than 35%. This is largely due to the fact that much of the energy dissipates into waste heat. However, the waste heat may be converted into electricity by using energy conversion modules made from bismuth telluride. In this work, it is demonstrated that electricity can be generated from waste heat due to the difference in temperatures. The thermal to electrical energy conversion is achieved by using a self-assembled thermoelectric generator (TEG). The TEG (thermoelectric generator) uses two different types of metallic compound semiconductors, known as n-typed and p-typed, to create voltage when the junctions are held at different temperatures. The work mechanism is based on the Seebeck effect. In this study, the TEGs are made from bismuth telluride (Bi-Te) with relatively high energy conversion efficiencies. In addition, it is readily available. The installation location of the TEG is studied. For testing purposes and convenience, the top of the radiator of a 1990 Mazda Miata car was chosen. The TEG and an aluminum finned heat sink were placed in order on the top of the radiator. Thermal paste was applied to both surfaces and secured with zip ties. A vent was cut on the hood of the car to promote airflow between the fins. Appropriate electrical wiring allowed the unit to output to a digital multi-meter which was located within the car for operator to take data. It is found from the measured results that 0.948 V is the maximum output and the average voltage is 0.751 V. The highest voltage came from driving mountain paths due to the heat sink and coolant temperature being higher than nominal. We estimate that placing an insulator between the heat sink and TEG would push the maximum voltage over 1.0 V. During the cool down phase, the TEG produced electricity continuously with a maximum voltage of 0.9 V right after engine cutoff. The voltage decreased to about 0.6 V within 40 minutes. It is found that the relationship between the temperature difference and output voltage is linear.


Author(s):  
Can Liao ◽  
Longfei Han ◽  
Na Wu ◽  
Xiaowei Mu ◽  
Yuan Hu ◽  
...  

Lithium (Li) metal batteries, as the ultimate goal of high energy density storage devices, have been regarded as a suitable candidate for next-generation electrical energy storage. Nevertheless, uncontrolled lithium dendrites...


2021 ◽  
Author(s):  
Soonho Park

The objective of this thesis is to report the single vibration mode standing wave tubular piezoelectric ultrasonic motors developed. Piezoelectric motors are driven by reverse piezoelectric effects which converts an input of ultrasonic frequency of electrical energy into an output of mechanical movement. There are many advantages of piezoelectric ultrasonic motors compared to electromagnetic motors such as simple structure, high energy density, and high torque at low speed. Three prototypes are designed and fabricated. Two motors are fabricated using PZT cylindrical tube; one with PZT teeth and the other with metal teeth. A third motor using brass tube with PZT plates attached is fabricated. After design and fabrication of three prototypes, the performances of the motors are tested using a test apparatus for speed and torque.


Author(s):  
Ruiyin Song ◽  
Xiancheng Wang

The max power per mass/volume of micro (mini) thermoelectric is related not only to the internal efficiency of thermoelectric generator but also to heat source and heat sink of the device. In this paper, high caloric value liquid fuel and high energy store PCM fuels were used as heat source while low phase transition temperature PCM as heat sink, and thermoelectric device was designed for test. Furthermore, the analysis of related data was conducted by experiments, and the merit and status in quo of using Radioisotope in thermoelectric device was analyzed, which shows that it is useful to make thermoelectric device from mini to micro. The experimental results show that adding heat sink is helpful to reduce the volume and improve the output power of the device.


Sign in / Sign up

Export Citation Format

Share Document