Numerical Simulation and Optimization on Casting Technique of HT200 Flywheel

2010 ◽  
Vol 97-101 ◽  
pp. 2553-2557 ◽  
Author(s):  
Bin Feng He ◽  
Guo Fa Mi ◽  
Shuang Shuang He

The Z-CAST software was employed to simulate the casting process of gray cast-iron flywheel. Shrinkage was predicted through analyzing the temperature field and the flow field. According to the simulation results, the gating system was improved to eliminate shrinkage, and the thin, wide ingate was shown that can reduce the shrinkage and increase casting yield.

2011 ◽  
Vol 474-476 ◽  
pp. 432-435
Author(s):  
Guo Fa Mi ◽  
Li Lin Chen ◽  
Bao Zhong Liu ◽  
Hai Yan Wang

The Pro/E software was used to generate 3-D model of pneumatic hammer housing casting. The solidification process of the casting was simulated by the numerical simulation software, View Cast. The location and scale of the shrinkage defects were shown in the results. The risers were designed by the View Cast software based on the simulation results. The reasonable risers were obtained after the optimization on the numerical simulation. And the parameters of gating system were got according to the simulation results calculated by the gating system designing function of View Cast. Then the solidification results demonstrated that the risers and pouring system could be planned by View Cast effectually. The reasonable casting process was obtained and the process has been proofed by the productive practice.


2010 ◽  
Vol 44-47 ◽  
pp. 117-121
Author(s):  
Bin Feng He ◽  
Zhu Qing Zhao

There are many kinds of casting defects such as insufficient pouring, cooling separation, crack, and shrinkage and soon on were formed in the mold filling and the solidification process, which affect the final casting performance. Based on the mathematical models of mold filling and solidification process, the numerical simulation of chilled cast iron camshaft in sand casting process has been done. The filling behaviors at each stage in the filling process were presented. The temperature distributions in the solidification process were obtained, and the positions of shrinkages were predicted. According to the simulation results, an improved technology is proposed, and the shrinkages were eliminated efficiently. The simulation results are in good agreement with practical.


2016 ◽  
Vol 26 (8) ◽  
pp. 2340-2354 ◽  
Author(s):  
Xing Han ◽  
Haitao Zhang ◽  
Bo Shao ◽  
Dongtao Wang ◽  
Longgang Cheng ◽  
...  

Purpose The purpose of this paper is to investigate the influence of sprue distributions on the flow field and temperature field of the cladding casting process and verify the simulation results by experiments. Design/methodology/approach A steady-state mathematic model for the coupling of fluid flow, heat transfer and solidification to describe the process of cladding casting was present. The effect of sprue distributions on melt flow and temperature field was discussed. Based on the numerical simulation results, the cladding billet was prepared successfully. Moreover, the model has been verified against by temperature measurements during the cladding casting process. Findings There is a good agreement between the measured and calculated results. The homogeneity of melt flow determines the formability of cladding billets and circular temperature difference affects the bonding of the two alloys. The AA4045/AA3003 cladding billet with no defects in size of f140/f110 mm was fabricated successfully. The alloy elements diffused across the interface and formed diffusion layer with a thickness of 15 µm. The interface bonding strength is higher than the tensile strength of AA3003, indicating the metallurgical bonding between two alloys. Research limitations/implications The casting parameters are limited to the aluminum alloy cladding billet in size of f140/f110 mm in this paper. Originality/value There are few reports of cladding billet, which are used to prepare condense pipes of automotive engines. The effect of distribution schemes on the cladding casting process is rarely studied.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092345
Author(s):  
Kaikui Zheng ◽  
Youxi Lin ◽  
Weiping Chen ◽  
Lei Liu

The water-meter shell has a complex-structured thin-walled cavity, and it can cause casting defects such as shrinkage and misrun. On the basis of structural analysis of a water-meter shell, a three-dimensional model and a finite element model of the water-meter shell were constructed using the SOLIDWORKS and ProCAST software as a modeling tool and a casting numerical simulation tool, respectively. Three processes associated with the bottom gating system without a riser, a step gating system with a preliminary riser, and a step gating system with an optimum riser were successively numerically simulated. The mold-filling sequence, temperature distribution, liquid-phase distribution during solidification, and shrinkage distribution of these three processes are discussed here. The numerical simulation results indicated that optimization of the casting process and the rational assembling of the riser led to the shrinkage volumes at the inlet position, regulating sleeve, and sealing ring of the water-meter shell decreasing from 0.68 to 0 cm3, 1.39 to 0.22 cm3, and 1.32 to 0.23 cm3, respectively. A comparison between model predictions and experimental measurements indicated that the castings produced by the optimized process had good surface quality and beautiful appearance, without casting defects, demonstrating that numerical simulation can be used as an effective tool for improving casting quality.


2011 ◽  
Vol 55-57 ◽  
pp. 2126-2129
Author(s):  
Xiao Chun Ma ◽  
Yi Qiang Zhuang ◽  
Ying Qi Tao

AZ91D magnesium alloy used as the automotive cooling system’s pump impeller material, using the finite element analysis software ProCAST to numerical simulation for the temperature field and the flow field of die-casting process, analyzed the defects causes of magnesium alloy die-casting, and then determined the gating system. Based on the results of numerical simulation analysis, the design of ingate of the gating system set on central department is reasonable. It's benefit for smooth filling of liquid metal and uniforming the temperature field distribution, so as to reduce casting porosity, cold shut and shrinkage defects.


2020 ◽  
Vol 991 ◽  
pp. 37-43
Author(s):  
Agus Yulianto ◽  
Rudy Soenoko ◽  
Wahyono Suprapto ◽  
As’ad Sonief ◽  
Agung Setyo Darmawan ◽  
...  

Molds of metal are widely used in the casting process. The cooling rate in solidification of castings product with metal molds on the outer side and inner side is different. Therefore, sizes and types of phase will be also different. This study aims to investigate the microstructure andhardness of gray cast iron. To realize this research, the gray cast iron melting process was carried out in an induction furnace. Melted gray cast iron was poured into a Ferro Casting Ductile mold that has been through a preheating process at a temperature of 300 o C. The gray cast iron is then tested for composition, microstructure and hardness. The test results show that the part containing morecementite phase will be harder.


2019 ◽  
Vol 25 (6) ◽  
pp. 989-997
Author(s):  
Yajun Yin ◽  
Wei Duan ◽  
Kai Wu ◽  
Yangdong Li ◽  
Jianxin Zhou ◽  
...  

Purpose The purpose of this study is to simulate the temperature distribution during an electron beam freeform fabrication (EBF3) process based on a fully threaded tree (FTT) technique in various scales and to analyze the temperature variation with time in different regions of the part. Design/methodology/approach This study presented a revised model for the temperature simulation in the EBF3 process. The FTT technique was then adopted as an adaptive grid strategy in the simulation. Based on the simulation results, an analysis regarding the temperature distribution of a circular deposit and substrate was performed. Findings The FTT technique was successfully adopted in the simulation of the temperature field during the EBF3 process. The temperature bands and oscillating temperature curves appeared in the deposit and substrate. Originality/value The FTT technique was introduced into the numerical simulation of an additive manufacturing process. The efficiency of the process was improved, and the FTT technique was convenient for the 3D simulations and multi-pass deposits.


China Foundry ◽  
2020 ◽  
Vol 17 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Ji-guang Liu ◽  
Lei Yang ◽  
Xiao-gang Fang ◽  
Bin Li ◽  
You-wen Yang ◽  
...  

2010 ◽  
Vol 29-32 ◽  
pp. 1878-1882 ◽  
Author(s):  
Jian Qiang Zhou ◽  
Fa Zhan Yang ◽  
De Sheng Li

To understand the thermal distribution in a complex structure and high quality linkage casting, a mathematical model of temperature and stress field was established. Numerical simulation techniques was applied by using Procast software in the temperature and stress fields of solidification process, and the foundry defect such as old lap, misrun, shrinkage and dispersed shrinkage was predicted. The stress distribution and deformation in cooling process of casting were analyzed. The simulation results can supply a scientific foundation for foundry technology.


Sign in / Sign up

Export Citation Format

Share Document