The Influence of Temperature on Secondary Forming of Titanium Gr 2 Sheet by Use of Single Point Incremental Forming

2014 ◽  
Vol 979 ◽  
pp. 351-354
Author(s):  
Nuttaphong Sornsuwit ◽  
Sunthorn Sittisakuljaroen

The single point incremental forming (SPIF) is a sheet metal forming process with high flexibility on manufacture of each individual workpiece. However, it usually requires more processing time than a conventional forming method and is important to process with appropriate parameters. This study is to investigate the influence of different temperatures on continuing secondary forming of Ti Gr2 sheet, employed the stress relieving and annealing temperature after primary forming. The deformed parts were examined on the following criteria; internal contact surface roughness, microhardness and sectional microstructure. Stress relieving and annealing temperatures of 580°C and 780°C were applied to the formed parts prior to their secondary forming. It is found that the surface roughness increased from Ra 2.104 μm and 2.498 μm to Ra 2.55 μm and 3.18 μm respectively after secondary forming. The formability of 25 mm radius test specimens remained at 12 mm depth with limited obvious change.

2021 ◽  
Vol 343 ◽  
pp. 04007
Author(s):  
Mihai Popp ◽  
Gabriela Rusu ◽  
Sever-Gabriel Racz ◽  
Valentin Oleksik

Single point incremental forming is one of the most intensely researched die-less manufacturing process. This process implies the usage of a CNC equipment or a serial robot which deforms a sheet metal with the help of a relatively simple tool that follows an imposed toolpath. As every cold metal forming process, besides the many given advantages it has also some drawbacks. One big drawback in comparison with other cold metal forming processes is the low accuracy of the deformed parts. The aim of this research is to investigate the sheet metal bending mechanism through finite element method analysis. The results shows that the shape of the retaining rings has a big influence over the final geometrical accuracy of the parts manufactured through single point incremental forming.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1287
Author(s):  
Fernando Bautista-Monsalve ◽  
Francisco García-Sevilla ◽  
Valentín Miguel ◽  
Jesús Naranjo ◽  
María Carmen Manjabacas

Single point incremental forming (SPIF) is a cheap and flexible sheet metal forming process for rapid manufacturing of complex geometries. Additionally, it is important for engineers to measure the surface finish of work pieces to assess their quality and performance. In this paper, a predictive model based on machine learning and computer vision was developed to estimate arithmetic mean surface roughness (Ra) and maximum peak to valley height (Rz) of Ti6Al4V parts obtained by SPIF. An image database was prepared to train different classification algorithms in accordance with a supervised learning approach. A speeded up robust feature (SURF) detector was used to obtain visual vocabulary so that the classifiers are able to group the photographs into classes. The experimental results indicated that the proposed predictive method shows great potential to determine the surface quality, as classifiers based on a support vector machine with a polynomial kernel are suitable for this purpose.


2010 ◽  
Vol 129-131 ◽  
pp. 1222-1227 ◽  
Author(s):  
Ghulam Hussain ◽  
Gao Lin ◽  
Nasir Hayat ◽  
Asif Iqbal

Single Point Incremental Forming (SPIF) is a novel sheet metal forming process. The formability (i.e. spif-ability) in this process is determined through Varying Wall Angle Conical Frustum (VWACF) test. In this paper, the effect of variation in the curvature radius, a geometrical parameter of test, on the test results is investigated. A series of VWACF tests with a variety of curvature radii is performed to quantify the said effect. It is found that the spif-ability increases with increasing of curvature radius. However, any variation in the curvature radius does not affect the spif-ability when the normalized curvature radius (i.e. curvature radius/tool radius) becomes higher than 9.


2014 ◽  
Vol 979 ◽  
pp. 359-362
Author(s):  
Nuttaphong Sornsuwit ◽  
Sunthorn Sittisakuljaroen

The single point incremental forming (SPIF) is a manufacturing process which allows small batch and asymmetric shape fabrication. The research focuses on its applications by consider surface roughness and formability. The surface roughness of specimen was resulted by the influence obtained between tool and specimen, where the lubricant played a significant role during the forming process, as well as material elongation as a mechanical property governed the formability of metal sheet. Surface roughness tester, SEM, EDS and profilometer were used for the characterizations. The results showed that low roughness value (Ra) of SUS 304 and SUS 316L obtained by applying air blowing as a lubricant, while Ti Gr2 could obtain low roughness by using MoS2. The behavior of wear was an adhesive wear which transfer to an abrasive wear. SUS 304 and SUS 316L sheet of test specimens achieved higher depth in forming by air lubricant and MoS2, and Ti Gr2 sheet revealed a better formability with MoS2. Furthermore, the highest depth was correlated with high roughness value for each material.


2014 ◽  
Vol 979 ◽  
pp. 335-338
Author(s):  
Kittiphat Rattanachan ◽  
Chatchapol Chungchoo

The single point incremental forming process (SPIF) are suited for sheet metal prototyping, because it is a low cost production process that produces sheet metal part without any used of die, and easy to adjust the part’s geometry by change toolpath. But the quality of forming parts is still in doubt. In some applications, such as mould cavity for rapid mould and the medical parts, in this case the inside surface roughness plays an importance role. In this paper, the SPIF process parameters that affected to the inner surface roughness were experimental studied. The investigated parameters are composing of tool feed rate, side overlap, depth step and tool radius. The 2k-p factorial experimental design was used to analyze the interaction between each parameter. The results showed that increasing feed rate and depth step decreased inner surface roughness. Reducing tool rotational speed and feed rate reduced inner surface roughness. So increasing depth step with decreasing side overlap reduced inner surface roughness. The large tool radius and lower side overlap improved inner surface roughness. The large tool radius and higher depth step improved inner surface roughness. And last, reducing tool rotational speed with larger tool radius, the inner surface roughness is decreased.


2011 ◽  
Vol 12 (3) ◽  
Author(s):  
Meftah Hrairi ◽  
Salah B. M. Echrif

Single Point Incremental Forming (SPIF) is a promising sheet-metal-forming process that permits the manufacturing of small to medium-sized batches of complex parts at low cost. It allows metal forming to work in the critical ‘necking-to-tearing' zone which results in a strong thinning before failure if the process is well designed. Moreover, the process is complex due to the number of variables involved. Thus, it is not possible to consider that the process has been well assessed; several remaining aspects need to be clarified. The objective of the present paper is to study some of these aspects, namely, the phenomenon of the wall thickness overstretch along depth and the effect of the tool path on the distribution of the wall thickness using finite element simulations.Abstrak: Pembentukan Tokokan Mata Tunggal (Single Point Incremental Forming (SPIF)) merupakan satu proses pembentukan kepingan logam yang membolehkan pembuatan dalam jumlah yang kecil hingga sederhana, bahagian-bahagian yang kompleks pada kos yang rendah. Jika proses ini direka dengan baik, kaedah ini membolehkan pembentukan logam yang baik terhasil. Jika tidak, semasa peringkat zon kritikal ‘perleheran-ke-pengoyakan' menyebabkan penipisan keterlaluan yang boleh menyebabkan logam tersebut rosak. Tambahan pula, proses ini agak kompleks, kerana ia melibatkan beberapa pemboleh ubah. Maka, walaupun proses ini telah dinilaikan seeloknya; masih terdapat beberapa aspek lain yang perlu diperjelaskan. Objektif kertas ini dibentangkan adalah untuk mengkaji beberapa aspek tertentu, seperti, ketebalan dinding regangan berlebihan di sepanjang kedalaman dan kesan tool path (beberapa siri posisi koordinat untuk menentukan pergerakan alatan memotong ketika operasi memesin) terhadap pengagihan ketebalan dinding menggunakan simulasi unsur terhingga.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3973
Author(s):  
José M. Diabb Zavala ◽  
Oscar Martínez-Romero ◽  
Alex Elías-Zúñiga ◽  
Héctor Manuel Leija Gutiérrez ◽  
Alejandro Estrada-de la Vega ◽  
...  

This paper focuses on studying how mineral oil, sunflower, soybean, and corn lubricants influence friction and wear effects during the manufacturing of aluminum parts via the single point incremental forming (SPIF) process. To identify how friction, surface roughness, and wear change during the SPIF of aluminum parts, Stribeck curves were plotted as a function of the SPIF process parameters such as vertical step size, wall angle, and tool tip semi-spherical diameter. Furthermore, lubricant effects on the surface of the formed parts are examined by energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM) images, the Alicona optical 3D measurement system, and Fourier-transform infrared spectroscopy (FTIR). Results show that during the SPIF process of the metallic specimens, soybean and corn oils attained the highest friction, along forces, roughness, and wear values. Based on the surface roughness measurements, it can be observed that soybean oil produces the worst surface roughness finish in the direction perpendicular to the tool passes (Ra =1.45 μm) considering a vertical step size of 0.25 mm with a 5 mm tool tip diameter. These findings are confirmed through plotting SPIFed Stribeck curves for the soybean and corn oils that show small hydrodynamic span regime changes for an increasing sample step-size forming process. This article elucidates the effects caused by mineral and vegetable oils on the surface of aluminum parts produced as a function of Single Point Incremental Sheet Forming process parameters.


2021 ◽  
Vol 883 ◽  
pp. 217-224
Author(s):  
Yannick Carette ◽  
Marthe Vanhulst ◽  
Joost R. Duflou

Despite years of supporting research, commercial use of the Single Point Incremental Forming process remains very limited. The promised flexibility and lack of specific tooling is contradicted by its highly complex deformation mechanics, resulting in a process that is easy to implement but where workpiece accuracy is very difficult to control. This paper looks at geometry compensation as a viable control strategy to increase the accuracy of produced workpieces. The input geometry of the process can be compensated using knowledge about the deformations occurring during production. The deviations between the nominal CAD geometry and the actual produced geometry can be calculated in a variety of different ways, thus directly influencing the compensation. Two different alignment methods and three deviation calculation methods are explained in detail. Six combined deviation calculation methods are used to generate compensated inputs, which are experimentally produced and compared to the uncompensated part. All different methods are able to noticeably improve the accuracy, with the production alignment and closest point deviation calculation achieving the best results


Sign in / Sign up

Export Citation Format

Share Document