Study of Mechanical Behaviour of Stir Cast Aluminium Based Composite Reinforced with Mechanically Ball Milled TiB2 Nano Particles

2014 ◽  
Vol 984-985 ◽  
pp. 410-415
Author(s):  
E.S. Esakkiraj ◽  
S. Suresh ◽  
N. Shenbaga Vinayaga Moorthi ◽  
M. Krishna Kumar ◽  
S.M. Jenin Ranjith

Metal matrix composites possess some glamorous properties like light weight, low density ,high strength-to-density ratio, formable to complex shape, lower manufacturing cost and are used more in commercial, industrial, marine, naval based industrial and are extensively used in automobiles and aerospace like empennage, wings, fuselage in fighter aircraft, bomber, transport, general aviation, rotary aircraft etc. Many researches are done on micro structural metals matrix composites and they result shows that composite of micro structural having good mechanical properties. Instead of using micro structural nanoparticles are used for better mechanical properties and better applications in aeronautical field. The present study is an attempt to prepare and analysis of mechanical properties of Aluminium 6061 reinforcement with TiB2nanoparticles using liquid metallurgy. By the use of ball milling process the TiB2micro particles are converted in to nanoparticles and reinforced with Aluminium 6061 in stir casting process. The addition level of reinforcement is being varied from 0-15wt% in step of 4 wt%.Test carried out on the fabricated composite included scanning electron microscopy, XRD, EDAX analysis, and Thermal analysis.

The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


Author(s):  
Paramjit Singh

Abstract: Aluminum alloy’s widely employed in transportation applications like: aerospace, aviation, marine and automobile sector due to their good mechanical properties, wear properties, corrosion behavior and high strength to density ratio. The current review article mainly highlights the effects of various reinforcements on mechanical and tribological properties of aluminum based metal matrix composite materials and focuses on the types of different reinforcements. Review revealed that, there is significant improvement in mechanical properties of AMMC’s with different reinforcements as compared to traditional base alloys. The reinforcements may be SiC, TiO2 , Al2O3 , fly ash, B4C, fiber, Zircon are incorporated in the stir casting or other methods. Keywords: AMMC, Reinforcements, Mechanical properties, Stir casting etc.


2018 ◽  
Vol 188 ◽  
pp. 01023
Author(s):  
Ana Kračun ◽  
Franc Tehnovnik ◽  
Fevzi Kafexhiu ◽  
Tadeja Kosec ◽  
Darja Jenko ◽  
...  

The aim of the study was to assess the influence of adding Al2O3 nano-particles of 0.5 wt. % with the mean particle size of 500 nm on the mechanical properties and wear behaviour of the austenitic stainless steel matrix reinforced with nano-particles produced by conventional ingot casting. The focus was on the methods and possibilities of homogeneous and uniform distribution of the particles within the steel matrix using conventional casting routes. The main drawback of the casting method used is the agglomeration of the particles and poor interface between the particles and the metal matrix. The results show that through a proper insertion method, nano-particles can be successfully introduced into the metal matrix. The Al2O3 nano-particles were successfully incorporated into the steel matrix with no signs of clustering and intermetallic reactions taking place between the nano-particles and the steel matrix. This led to improved mechanical properties as well as the wear behaviour of the stainless steel, achieved by using conventional casting routes.


Author(s):  
G. Sathishkumar ◽  
S.J. Irudayaraja ◽  
S. Sivaganesan ◽  
M. Thuyavan

Metal matrix composites are of great interest in industrial applications for its light weight with high specific strength, stiffness and heat resistance. The processing of MMCs by stir casting process is an effective way of manufacturing. In this paper the comparison of mechanical properties of Aluminium 7075 as a base metal and varying composition of fly ash by 3 and 6 wt.% SiC and 7% fly ash as reinforcement is carried out. Scanning electron microscope was used to confirm the presence of SiC and fly ash. The composites with 6% SiC was found to have maximum hardness whereas composites of 6% and 5 % fly ash were found to have minimum hardness. The mechanical properties such as wear resistance were studied. From the results, it has been finalized that the addition of 6% SiC was identified to show the least wear rate.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
P. Gnaneswaran ◽  
V. Hariharan ◽  
Samson Jerold Samuel Chelladurai ◽  
G. Rajeshkumar ◽  
S. Gnanasekaran ◽  
...  

In this investigation, aluminium-silicon-based alloy (LM6) with the addition of (0, 2.5, 5, and 10%) copper-coated short steel fiber and 5% boron carbide (B4C) element-strengthened composites was fabricated by the stir casting method. Mechanical properties and tribological behaviors of LM6-based hybrid composites were investigated, and microstructures of different castings were examined by an image analyzer. The test was conducted at different loads (10, 20, 30, and 40 N) and different sliding spaces (500, 1000, 1500, and 2000 m), respectively. The results revealed that the sample loaded with 10% of reinforcement recorded the highest tensile strength of 231 MPa. On the other hand, the hardness value increased from 71 to 144 BHN, when 15% of reinforcement was added to the sample. It was also noted that 10% copper-coated steel fiber improved wear resistance up to 50% when compared to LM6. A field emission scanning electron microscope was employed to observe the morphology of the worn surfaces of composites at different sliding distances and load conditions. The hybrid composite revealed that the combination of both short steel fibers and reinforcement of ceramic particles enhanced the mechanical properties, obtaining superior wear resistance.


Sign in / Sign up

Export Citation Format

Share Document