Megawatt Wind Turbine Hydraulic Brake System Locking Device Modeling and Research Based on AMESim

2014 ◽  
Vol 988 ◽  
pp. 621-624 ◽  
Author(s):  
Hong Fu Tian ◽  
Li Wen Yan ◽  
Cun Jin Ai ◽  
Hui Xie

As a megawatt-class wind turbine braking system, in addition to brake, it should also be in place with a wind wheel locking device to ensure that the failure of the braking system in the normal case fan will not burst start again.To solve the problem the article has designed a hydraulic locking device, and USES the AMESim software on the research and analysis.

Author(s):  
Lu Xiong ◽  
Wei Han ◽  
Zhuoping Yu ◽  
Jian Lin ◽  
Songyun Xu

As one feasible solution of brake-by-wire systems, electro-hydraulic brake system has been made available into production recently. Electro-hydraulic brake system must work cooperatively with the hydraulic control unit of anti-lock braking system. Due to the mechanical configuration involving electric motor + reduction gear, the electro-hydraulic brake system could be stiffer in contrast to a conventional vacuum booster. That is to say, higher pressure peaks and pressure oscillation could occur during an active anti-lock braking system control. Actually, however, electro-hydraulic brake system and anti-lock braking system are produced by different suppliers considering brake systems already in production. Limited signals and operations of anti-lock braking system could be provided to the supplier of electro-hydraulic brake system. In this work, a master cylinder pressure reduction logic is designed based on speed servo system for active pressure modulation of electro-hydraulic brake system under the anti-lock braking system–triggered situation. The pressure reduction logic comprises of model-based friction compensation, feedforward and double closed-loop feedback control. The pressure closed-loop is designed as the outer loop, and the motor rotation speed closed-loop is drawn into the inner loop of feedback control. The effectiveness of the proposed controller is validated by vehicle experiment in typical braking situations. The results show that the controller remains stable against parameter uncertainties in extreme condition such as low temperature and mismatch of friction model. In contrast to the previous methods, the comparison results display the improved dynamic cooperative performance of electro-hydraulic brake system and anti-lock braking system and robustness.


Author(s):  
M.N. Gajre ◽  
R. Jegadeeshwaran ◽  
V. Sugumaran ◽  
A. Talbar

Brakes are indispensable element of automobile. It takes significant factor to slow down or stop vehicle at an instant which will help to prevent an incident or accident in panic scenario. In appropriate braking or breakdown in braking system may direct devastating effect on automobile as well as traveller safety. To enhance potential of braking system condition monitoring is drastic demand in automotive field. This research predominantly concentrates towards fault diagnosis of a hydraulic brake system with the principle of vibration signal. Feature extraction, feature selection and feature classification are the key measures under machine learning approach. Feature extraction can certainly accomplished by acquiring vibration from the system. Statistical features were for the fault diagnosis of hydraulic brake system. Best first tree algorithm will pick most effective features that will differentiate the fault conditions of the brake through given train samples. Fuzzy logic was selected as a classifier. In the present study, fuzzy classifier with the best first tree rules was used to perform the classification accuracy.


2012 ◽  
Vol 590 ◽  
pp. 441-445
Author(s):  
Qian Zhao ◽  
Jia Jun Duan ◽  
Cheng Wang

At present, the ABS braking system has been widely used in vehicle brake system, has become the important mechanism of automobile brake performance. This paper use the advantage of AMESim software for hydraulic system modeling, and build up the the model of ABS for the automobile brake system according to ABS system working principle, Simulation of automobile ABS hydraulic brake system work process, through the relevant parameter settings, compare and analysis the impacts made by some elements of the whole ABS system, finally make the foundations for the brake system for further optimization and improvement.


2013 ◽  
Vol 850-851 ◽  
pp. 701-704
Author(s):  
You Yao ◽  
Xue Xun Guo ◽  
Ming Peng ◽  
Ji Bing Zhang ◽  
Jie Zhang

This paper introduces the structure, principle and control mode of the electronic hydraulic brake system, and using simulation software AMESim to carry on the modeling and simulation study. Through the simulation of the WBS brake system, and comparison between the theory and the test, the WBS model is introduced and analyzed, which has great theoretical and practical significance to the future braking system.


2015 ◽  
Vol 787 ◽  
pp. 217-221 ◽  
Author(s):  
B. Navin Kumar ◽  
K.M. Parammasivam

Wind energy is one of the most significant renewable energy sources in the world. It is the only promising renewable energy resource that only can satisfy the nation’s energy requirements over the growing demand for electricity. Wind turbines have been installed all over the wind potential areas to generate electricity. The wind turbines are designed to operate at a rated wind velocity. When the wind turbines are exposed to extreme wind velocities such as storm or hurricane, the wind turbine rotates at a higher speed that affects the structural stability of the entire system and may topple the system. Mechanical braking systems and Aerodynamic braking systems have been currently used to control the over speeding of the wind turbine at extreme wind velocity. As a novel approach, it is attempted to control the over speeding of the wind turbine by aerodynamic braking system by providing the chord wise spacing (opening). The turbine blade with chord wise spacing alters the pressure distribution over the turbine blade that brings down the rotational speed of the wind turbine within the allowable limit. In this approach, the over speeding of the wind turbine blades are effectively controlled without affecting the power production. In this paper the different parameters of the chord wise spacing such as position of the spacing, shape of the spacing, width of the spacing and impact on power generation are analyzed and the spacing parameters are experimentally optimized.


2017 ◽  
Author(s):  
Xiangkun He ◽  
Xuewu Ji ◽  
Kaiming Yang ◽  
Yulong Liu ◽  
Jian WU ◽  
...  

Author(s):  
Alamelu Manghai T. M ◽  
Jegadeeshwaran R

Vibration-based continuous monitoring system for fault diagnosis of automobile hydraulic brake system is presented in this study. This study uses a machine learning approach for the fault diagnosis study. A hydraulic brake system test rig was fabricated. The vibration signals were acquired from the brake system under different simulated fault conditions using a piezoelectric transducer. The histogram features were extracted from the acquired vibration signals. The feature selection process was carried out using a decision tree. The selected features were classified using fuzzy unordered rule induction algorithm ( FURIA ) and Repeated Incremental Pruning to Produce Error Reduction ( RIPPER ) algorithm. The classification results of both algorithms for fault diagnosis of a hydraulic brake system were presented. Compared to RIPPER and J48 decision tree, the FURIA performs better and produced 98.73 % as the classification accuracy.


Author(s):  
Snegdha Gupta ◽  
Harish Hirani

Quick response and rheological properties as a function of magnetic field are well known features of MR fluids which inspire their usage as brake materials. Controllable torque and minimum weight of brake system are the deciding functions based on which the viability of the MR brake against the conventional hydraulic brake system can be judged. The aim of this study is to optimize a multi-disk magneto-rheological brake system considering torque and weight as objective functions and geometric dimensions of conventional hydraulic brake as constraints. The electric current accounting magnetic saturation, MR gap, number of disk, thickness of disk, and outer diameter of disk have been considered as design variables. To model the behavior of MR Fluid, Bingham and Herschel Bulkley models have been compared. To implement these models in estimating the braking torque a modification in shear rate dependent component has been proposed. The overall design of MR brake has been optimized using a hybrid (Genetic algorithm plus gradient based) optimization scheme of MATLAB software.


Sign in / Sign up

Export Citation Format

Share Document