scholarly journals Pharmacokinetic Interaction between Telaprevir and Methadone

2013 ◽  
Vol 57 (5) ◽  
pp. 2304-2309 ◽  
Author(s):  
Rolf van Heeswijk ◽  
Peter Verboven ◽  
Ann Vandevoorde ◽  
Petra Vinck ◽  
Jan Snoeys ◽  
...  

ABSTRACTHepatitis C virus (HCV) antibody is present in most patients enrolled in methadone maintenance programs. Therefore, interactions between the HCV protease inhibitor telaprevir and methadone were investigated. The pharmacokinetics ofR-andS-methadone were measured after administration of methadone alone and after 7 days of telaprevir (750 mg every 8 h [q8h]) coadministration in HCV-negative subjects on stable, individualized methadone therapy. UnboundR-methadone was measured in predose plasma samples before and during telaprevir coadministration. Safety and symptoms of opioid withdrawal were evaluated throughout the study. In total, 18 subjects were enrolled; 2 discontinued prior to receiving telaprevir. The minimum plasma concentration in the dosing interval (Cmin), the maximum plasma concentration (Cmax), and the area under the plasma concentration-time curve from h 0 (time of administration) to 24 h postdose (AUC0–24) forR-methadone were reduced by 31%, 29%, and 29%, respectively, in the presence of telaprevir. The AUC0–24ratio ofS-methadone/R-methadone was not altered. The median unbound percentage ofR-methadone increased by 26% in the presence of telaprevir. TheR-methadone median (absolute) unboundCminvalues in the absence (10.63 ng/ml) and presence (10.45 ng/ml) of telaprevir were similar. There were no symptoms of opioid withdrawal and no discontinuations due to adverse events. In summary, exposure to totalR-methadone was reduced by approximately 30% in the presence of telaprevir, while the exposure to unboundR-methadone was unchanged. No symptoms of opioid withdrawal were observed. These results suggest that dose adjustment of methadone is not required when initiating telaprevir treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT00933283.)

Pharmaceutics ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 600
Author(s):  
Agnieszka Karbownik ◽  
Danuta Szkutnik-Fiedler ◽  
Andrzej Czyrski ◽  
Natalia Kostewicz ◽  
Paulina Kaczmarska ◽  
...  

The tyrosine kinase inhibitor sorafenib is the first-line treatment for patients with hepatocellular carcinoma (HCC), in which hyperlipidemia and type 2 diabetes mellitus (T2DM) may often coexist. Protein transporters like organic cation (OCT) and multidrug and toxin extrusion (MATE) are involved in the response to sorafenib, as well as in that to the anti-diabetic drug metformin or atorvastatin, used in hyperlipidemia. Changes in the activity of these transporters may lead to pharmacokinetic interactions, which are of clinical significance. The study aimed to assess the sorafenib−metformin and sorafenib−atorvastatin interactions in rats. The rats were divided into five groups (eight animals in each) that received sorafenib and atorvastatin (ISOR+AT), sorafenib and metformin (IISOR+MET), sorafenib (IIISOR), atorvastatin (IVAT), and metformin (VMET). Atorvastatin significantly increased the maximum plasma concentration (Cmax) and the area under the plasma concentration–time curve (AUC) of sorafenib by 134.4% (p < 0.0001) and 66.6% (p < 0.0001), respectively. Sorafenib, in turn, caused a significant increase in the AUC of atorvastatin by 94.0% (p = 0.0038) and its metabolites 2−hydroxy atorvastatin (p = 0.0239) and 4−hydroxy atorvastatin (p = 0.0002) by 55.3% and 209.4%, respectively. Metformin significantly decreased the AUC of sorafenib (p = 0.0065). The AUC ratio (IISOR+MET group/IIISOR group) for sorafenib was equal to 0.6. Sorafenib did not statistically significantly influence the exposure to metformin. The pharmacokinetic interactions observed in this study may be of clinical relevance in HCC patients with coexistent hyperlipidemia or T2DM.


Bioanalysis ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 1321-1336 ◽  
Author(s):  
Sara S Mourad ◽  
Eman I El-Kimary ◽  
Magda A Barary ◽  
Dalia A Hamdy

Aim: Assessment of pharmacokinetic interaction between linagliptin (LNG) and tadalafil (TDL) in healthy males. Methods: First, a novel LC–MS method was developed; second, a Phase IV, open-label, cross-over study was performed. Volunteers took single 20-mg TDL dose on day 1 followed by wash out period of 2 weeks then multiple oral dosing of 5-mg/day LNG for 13 days. On day 13, volunteers were co-administered 20-mg TDL. Results: LNG and TDL single doses did not affect QTc interval. Smoking did not alter pharmacokinetics/pharmacodynamics of LNG and TDL. Co-administration of LNG with TDL resulted in TDL longer time to reach maximum plasma concentration (Tmax), decreased oral clearance (Cl/F) and oral volume of distribution (Vd/F), increased its maximum plasma concentration (Cmax), area under concentration-time curve (AUC), muscle pain and QTc prolongation. Conclusion: LNG and TDL co-administration warrants monitoring and/or TDL dose adjustment.


2014 ◽  
Vol 989-994 ◽  
pp. 1041-1043
Author(s):  
Ping Liu ◽  
Liang Sun ◽  
Jian Zhang ◽  
Rui Chen Guo

In this single-center, randomized, open-label, 3-way crossover study, subjects received each of the following: a single dose of Tramadol Hydrochloride Injection (THI) 35 mg, a single dose of Promethazine Hydrochloride Injection (PHI) 45 mg, and single dose of Compound Tramadol Hydrochloride Injection (CTHI) 80mg. Blood was collected and plasma was analyzed for the pharmacokinetic parameters (maximum plasma concentration [Cmax], time to Cmax [Tmax], area under the plasma concentration-time curve, plasma elimination half-life, clearance, and apparent volume of distribution) of Tramadol and Promethazine. In general, several pharmacokinetic interactions were observed between Tramadol and Promethazine in the present study.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Hidemichi Takai ◽  
Tatsuya Morimoto

Introduction: Curcumin prevents the development of heart failure and is a potential treatment for heart failure. Although curcumin is known to be safe, its therapeutic efficiency is limited due to its low bioavailability. To overcome this problem, we developed ASD-Cur, an amorphous formulation of curcumin. In this study, we investigated the effect of ASD-Cur and compared it with Theracurmin ® , a colloidal submicron dispersion of curcumin. Methods: Male SD rats were orally administrated with ASD-Cur or Theracurmin ® (10 mg/kg curcumin). The plasma levels of curcumin were measured at 0.25, 0.5, 1, 2, 4 and 6 hours after administration. Twelve healthy volunteers, who had provided written informed consent, were administrated with ASD-Cur and Theracurmin ® containing 30 mg curcumin, and plasma curcumin concentrations were determined at 0.5, 1, 2, 4, and 8 hours. Next, male SD rats were subjected to MI or sham surgery. One week after surgery, the MI rats were randomly assigned to 4 groups: vehicle, ASD-Cur (0.2 mg/kg curcumin) or Theracurmin ® (0.2 or 0.5 mg/kg curcumin). Oral administration of these compounds was repeated for 6 weeks. After echocardiographic examinations, myocardial cell diameter, perivascular fibrosis, mRNA levels, and the acetylation of histone H3K9 were measured. Results: After administration in rats, the area under the plasma concentration-time curve ( AUC 0-6h ) and the maximum plasma concentration ( C max ) of ASD-Cur were 3.7-fold and 9.6-fold higher than those of Theracurmin ® , respectively. The AUC 0-8h and C max of ASD-Cur in humans were 3.4-fold and 5.4-fold higher than those of Theracurmin ® , respectively. Echocardiographic analysis showed that 0.2 mg/kg ASD-Cur and 0.5 mg/kg Theracurmin ® significantly improved the MI-induced deterioration of FS and left ventricular hypertrophy to the same extent. Both treatments significantly suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, mRNA levels of hypertrophic markers and cardiac fibrosis, and acetylation of histone H3K9 to the same extent. Conclusion: These findings indicated that ASD-Cur has greater bioavailability than Theracurmin ® , and could exhibit greater therapeutic potency towards for MI-induced heart failure at a lower dose.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Dong-Seok Lee ◽  
Dong Wook Kang ◽  
Go-Wun Choi ◽  
Han-Gon Choi ◽  
Hea-Young Cho

This study optimized the preparation of electrosprayed microspheres containing leuprolide and developed an in vitro–in vivo correlation (IVIVC) model that enables mutual prediction between in vitro and in vivo dissolution. The pharmacokinetic (PK) and pharmacodynamic (PD) study of leuprolide was carried out in normal rats after subcutaneous administration of electrosprayed microspheres. The parameters of the IVIVC model were estimated by fitting the PK profile of Lucrin depot® to the release compartment of the IVIVC model, thus the in vivo dissolution was predicted from the in vitro dissolution. From this correlation, the PK profile of leuprolide was predicted from the results of in vivo dissolution. The IVIVC model was validated by estimating percent prediction error (%PE) values. Among prepared microspheres, an optimal formulation was selected using the IVIVC model. The maximum plasma concentration and the area under the plasma concentration–time curve from zero to infinity from the predicted PK profile were 4.01 ng/mL and 52.52 h·ng/mL, respectively, and from the observed PK profile were 4.14 ng/mL and 56.95 h·ng/mL, respectively. The percent prediction error values of all parameters did not exceed 15%, thus the IVIVC model satisfies the validation criteria of the Food and Drug Administration (FDA) guidance. The PK/PD evaluation suggests that the efficacy of OL5 is similar to Lucrin depot®, but the formulation was improved by reducing the initial burst release.


2013 ◽  
Vol 61 (3) ◽  
pp. 376-382
Author(s):  
Jelena Šuran ◽  
Dubravka Flajs ◽  
Maja Peraica ◽  
Andreja Prevendar Crnić ◽  
Marcela Šperanda ◽  
...  

Levamisole has been shown to stimulate the immune response in immunocompromised humans and animals. However, its use as an adjuvant in immunocompromised weaned pigs prone to colibacillosis has only been experimentally tested but not yet officially approved. Therefore, the aim of these studies was to study the pharmacokinetics (PK) of an immunomodulating dose of levamisole in weaned pigs. For that purpose, 20 weaned crossbred pigs were divided into two treatment groups. In this parallel-design study, a single dose of levamisole (2.5 mg/kg body weight) was administered by the intramuscular (i.m.) or oral (p.o.) route. Statistically significant differences between the i.m. and p.o. routes in terminal beta rate constant (β), maximum plasma concentration (Cmax), area under the curve (AUC) for plasma concentration-time curve from time zero to infinity (AUC0-inf), area under the plasma concentration-time curve from time 0 to the last quantifiable time point (AUC0-t) were determined. Further research is needed to establish a relationship between the PK and the immunomodulating effect of levamisole in pigs.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Fabrizio Stocchi ◽  
Laura Vacca ◽  
Paola Grassini ◽  
Stephen Pawsey ◽  
Holly Whale ◽  
...  

Objectives.To characterize the pharmacokinetic profile of levodopa (L-dopa) and carbidopa after repeated doses of the effervescent tablet of melevodopa/carbidopa (V1512; Sirio) compared with standard-release L-dopa/carbidopa in patients with fluctuating Parkinson’s disease. Few studies assessed the pharmacokinetics of carbidopa to date.Methods.This was a single-centre, randomized, double-blind, double-dummy, two-period crossover study. Patients received V1512 (melevodopa 100 mg/carbidopa 25 mg) or L-dopa 100 mg/carbidopa 25 mg, 7 doses over 24 hours (Cohort 1), 4 doses over 12 hours (Cohort 2), or 2 doses over 12 hours in combination with entacapone 200 mg (Cohort 3). Pharmacokinetic parameters included area under the plasma-concentration time curve (AUC), maximum plasma concentration (Cmax), and time toCmax(tmax).Results.Twenty-five patients received at least one dose of study medication. L-dopa absorption tended to be quicker and pharmacokinetic parameters less variable after V1512 versus L-dopa/carbidopa, both over time and between patients. Accumulation of L-dopa in plasma was less noticeable with V1512. Carbidopa exposure and interpatient variability was lower when V1512 or L-dopa/carbidopa was given in combination with entacapone. Both treatments were well tolerated.Conclusions.V1512 provides a more reliable L-dopa pharmacokinetic profile versus standard-release L-dopa/carbidopa, with less drug accumulation and less variability. This trial is registered with ClinicalTrials.govNCT00491998.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1142
Author(s):  
Kshitis Chandra Baral ◽  
Jae-Geun Song ◽  
Sang Hoon Lee ◽  
Rajiv Bajracharya ◽  
Godesi Sreenivasulu ◽  
...  

AC1497 is an effective dual inhibitor of malate dehydrogenase 1 and 2 targeting cancer metabolism. However, its poor aqueous solubility results in low bioavailability, limiting its clinical development. This study was conducted to develop an effective self-nanoemulsifying drug delivery system (SNEDDS) of AC1497 to improve its oral absorption. Based on the solubility of AC1497 in various oils, surfactants, and cosurfactants, Capryol 90, Kolliphor RH40, and Transcutol HP were selected as the components of SNEDDS. After testing various weight ratios of Capryol 90 (20–30%), Kolliphor RH40 (35–70%), and Transcutol HP (10–35%), SNEDDS-F4 containing 20% Capryol 90, 45% Kolliphor RH40, and 35% Transcutol HP was identified as an optimal SNEDDS with a narrow size distribution (17.8 ± 0.36 nm) and high encapsulation efficiency (93.6 ± 2.28%). Drug release from SNEDDS-F4 was rapid, with approximately 80% of AC1497 release in 10 min while the dissolution of the drug powder was minimal (<2%). Furthermore, SNEDDS-F4 significantly improved the oral absorption of AC1497 in rats. The maximum plasma concentration and area under the plasma concentration–time curve of AC1497 were, respectively 6.82- and 3.14-fold higher for SNEDDS-F4 than for the drug powder. In conclusion, SNEDDS-F4 with Capryol 90, Kolliphor RH40, and Transcutol HP (20:45:35, w/w) effectively improves the solubility and oral absorption of AC1497.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e13512-e13512 ◽  
Author(s):  
Arthur P. Staddon ◽  
Trilok V. Parekh ◽  
Roland Elmar Knoblauch ◽  
Chi Keung ◽  
Apexa Bernard ◽  
...  

e13512 Background: Trabectedin (Yondelis; T) is a tetrahydroisoquinoline compound initially isolated from the marine tunicate, Ecteinascidia turbinata, and currently produced synthetically. It is primarily metabolized by the cytochrome P450 (CYP)3A4 enzyme. Thus, potent inducers or inhibitors of this enzyme may alter the plasma concentrations of T. This study assessed the effects of rifampin (R), a strong CYP3A4 inducer, on the pharmacokinetics (PK) and safety of T. Methods: In this 2-way crossover study, patients (≥18 years of age) with locally advanced or metastatic disease were randomized (1:1) to receive one of the 2 treatment sequences: sequence 1: R plus T followed 28 days later by T; sequence 2: T followed 28 days later by R plus T. During each sequence, R (600 mg/day) was administered for 6 consecutive days and T (1.3 mg/m2, IV) was administered over a 3 hour infusion. Dexamethasone (20 mg, IV) was administered before T administration. PK and safety of T were evaluated with and without coadministration of R. Results: Of the 11 enrolled patients, 8 were PK evaluable. Coadministration of R with T decreased mean maximum plasma concentration (Cmax) by approximately 22% and mean area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUClast) by approximately 31% (Table 1). Coadministration of R with T also resulted in 23% shorter elimination half-life. Overall, the safety profile of T was comparable when administered alone or with R. Conclusions: In comparison with T alone, coadministration of R resulted in reduced systemic exposure of T in these 8 patients, as measured by Cmax and AUClast. The coadministration of potent inducers of CYP3A4 with T may increase the metabolic clearance of T. Clinical trial information: NCT01273480. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document