Research on a Theatre Recommendation System

2014 ◽  
Vol 989-994 ◽  
pp. 4775-4779
Author(s):  
Yu Long Li ◽  
Ying Li ◽  
Wei Jiang ◽  
Zhi Zhou

Nowadays the recommendation system has been widely used, especially in the field of e-commerce, SNS, music, etc. On the basis of recommendation systems which are widely used, the paper puts forward a theatre recommendation algorithm which is more suitable in the field of theatre. In order to achieve the recommendation of theatre, the paper uses a series of steps, including weight, bipartite graph, data standardization, similarity calculation. After using this algorithm, some theatres will be recommended according to recommendation level. The results of recommendation are more reasonable, effective and satisfied.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Guangxia Xu ◽  
Zhijing Tang ◽  
Chuang Ma ◽  
Yanbing Liu ◽  
Mahmoud Daneshmand

Complex and diverse information is flooding entire networks because of the rapid development of mobile Internet and information technology. Under this condition, it is difficult for a person to locate and access useful information for making decisions. Therefore, the personalized recommendation system which utilizes the user’s behaviour information to recommend interesting items emerged. Currently, collaborative filtering has been successfully utilized in personalized recommendation systems. However, under the condition of extremely sparse rating data, the traditional method of similarity between users is relatively simple. Moreover, it does not consider that the user’s interest will change over time, which results in poor performance. In this paper, a new similarity measure method which considers user confidence and time context is proposed to preferably improve the similarity calculation between users. Finally, the experimental results demonstrate that the proposed algorithm is suitable for the sparse data and effectively improves the prediction accuracy and enhances the recommendation quality at the same time.


SPIN ◽  
2021 ◽  
Author(s):  
Meng Qiao ◽  
Zheng Shan ◽  
Junchao Wang ◽  
Huihui Sun ◽  
Fudong Liu

Modern recommendation systems leverage historical behavior information to generate precise recommendation results for users. However, when the data scale of users and items is large, it is difficult to generate recommendation results in time. Tang proposed a quantum-inspired recommendation algorithm, which could solve the recommendation problem in constant time complexity. However, Tang’s approach is based on a set of assumptions which rely heavily on some empirical parameters. The time complexity for calculating parameters is high. Thus, this approach cannot be directly applied in industrial applications. In this paper, we propose a method, namely, Quantum-inspired Recommendation system with threshold Proportion Interception (QRPI), which is based on the quantum-inspired recommendation system and more suitable for industrial environments. Compared with the existing widely used recommendation algorithms, we show through numerical experiments that our solution can achieve almost the same performance with better efficiency.


2020 ◽  
Vol 14 ◽  
Author(s):  
Amreen Ahmad ◽  
Tanvir Ahmad ◽  
Ishita Tripathi

: The immense growth of information has led to the wide usage of recommender systems for retrieving relevant information. One of the widely used methods for recommendation is collaborative filtering. However, such methods suffer from two problems, scalability and sparsity. In the proposed research, the two issues of collaborative filtering are addressed and a cluster-based recommender system is proposed. For the identification of potential clusters from the underlying network, Shapley value concept is used, which divides users into different clusters. After that, the recommendation algorithm is performed in every respective cluster. The proposed system recommends an item to a specific user based on the ratings of the item’s different attributes. Thus, it reduces the running time of the overall algorithm, since it avoids the overhead of computation involved when the algorithm is executed over the entire dataset. Besides, the security of the recommender system is one of the major concerns nowadays. Attackers can come in the form of ordinary users and introduce bias in the system to force the system function that is advantageous for them. In this paper, we identify different attack models that could hamper the security of the proposed cluster-based recommender system. The efficiency of the proposed research is validated by conducting experiments on student dataset.


Informatics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 49
Author(s):  
Samit Chakraborty ◽  
Md. Saiful Hoque ◽  
Naimur Rahman Jeem ◽  
Manik Chandra Biswas ◽  
Deepayan Bardhan ◽  
...  

In recent years, the textile and fashion industries have witnessed an enormous amount of growth in fast fashion. On e-commerce platforms, where numerous choices are available, an efficient recommendation system is required to sort, order, and efficiently convey relevant product content or information to users. Image-based fashion recommendation systems (FRSs) have attracted a huge amount of attention from fast fashion retailers as they provide a personalized shopping experience to consumers. With the technological advancements, this branch of artificial intelligence exhibits a tremendous amount of potential in image processing, parsing, classification, and segmentation. Despite its huge potential, the number of academic articles on this topic is limited. The available studies do not provide a rigorous review of fashion recommendation systems and the corresponding filtering techniques. To the best of the authors’ knowledge, this is the first scholarly article to review the state-of-the-art fashion recommendation systems and the corresponding filtering techniques. In addition, this review also explores various potential models that could be implemented to develop fashion recommendation systems in the future. This paper will help researchers, academics, and practitioners who are interested in machine learning, computer vision, and fashion retailing to understand the characteristics of the different fashion recommendation systems.


Author(s):  
Lakshmikanth Paleti ◽  
P. Radha Krishna ◽  
J.V.R. Murthy

Recommendation systems provide reliable and relevant recommendations to users and also enable users’ trust on the website. This is achieved by the opinions derived from reviews, feedbacks and preferences provided by the users when the product is purchased or viewed through social networks. This integrates interactions of social networks with recommendation systems which results in the behavior of users and user’s friends. The techniques used so far for recommendation systems are traditional, based on collaborative filtering and content based filtering. This paper provides a novel approach called User-Opinion-Rating (UOR) for building recommendation systems by taking user generated opinions over social networks as a dimension. Two tripartite graphs namely User-Item-Rating and User-Item-Opinion are constructed based on users’ opinion on items along with their ratings. Proposed approach quantifies the opinions of users and results obtained reveal the feasibility.


2013 ◽  
Vol 765-767 ◽  
pp. 630-633 ◽  
Author(s):  
Chong Lin Zheng ◽  
Kuang Rong Hao ◽  
Yong Sheng Ding

Collaborative filtering recommendation algorithm is the most successful technology for recommendation systems. However, traditional collaborative filtering recommendation algorithm does not consider the change of time information. For this problem,this paper improve the algorithm with two new methods:Predict score incorporated with time information in order to reflect the user interest change; Recommend according to scores by adding the weight information determined by the item life cycle. Experimental results show that the proposed algorithm outperforms the traditional item in accuracy.


2016 ◽  
Vol 16 (6) ◽  
pp. 245-255 ◽  
Author(s):  
Li Xie ◽  
Wenbo Zhou ◽  
Yaosen Li

Abstract In the era of big data, people have to face information filtration problem. For those cases when users do not or cannot express their demands clearly, recommender system can analyse user’s information more proactive and intelligent to filter out something users want. This property makes recommender system play a very important role in the field of e-commerce, social network and so on. The collaborative filtering recommendation algorithm based on Alternating Least Squares (ALS) is one of common algorithms using matrix factorization technique of recommendation system. In this paper, we design the parallel implementation process of the recommendation algorithm based on Spark platform and the related technology research of recommendation systems. Because of the shortcomings of the recommendation algorithm based on ALS model, a new loss function is designed. Before the model is trained, the similarity information of users and items is fused. The experimental results show that the performance of the proposed algorithm is better than that of algorithm based on ALS.


2021 ◽  
Vol 13 (2) ◽  
pp. 47-53
Author(s):  
M. Abubakar ◽  
K. Umar

Product recommendation systems are information filtering systems that uses ratings and predictions to make new product suggestions. There are many product recommendation system techniques in existence, these include collaborative filtering, content based filtering, knowledge based filtering, utility based filtering and demographic based filtering. Collaborative filtering techniques is known to be the most popular product recommendation system technique. It utilizes user’s previous product ratings to make new product suggestions. However collaborative filtering have some weaknesses, which include cold start, grey sheep issue, synonyms issue. However the major weakness of collaborative filtering approaches is cold user problem. Cold user problem is the failure of product recommendation systems to make product suggestions for new users. Literature investigation had shown that cold user problem could be effectively addressed using active learning technique of administering personalized questionnaire. Unfortunately, the result of personalized questionnaire technique could contain some user preference uncertainties where the product database is too large (as in Amazon). This research work addresses the weakness of personalized questionnaire technique by applying uncertainty reduction strategy to improve the result obtained from administering personalized questionnaire. In our experimental design we perform four different experiments; Personalized questionnaire approach of solving user based coldstart was implemented using Movielens dataset of 1M size, Personalized questionnaire approach of solving user based cold start was implemented using Movielens dataset of 10M size, Personalized questionnaire with uncertainty reduction was implemented using Movielens dataset of 1M size, and also Personalized  questionnaire with uncertainty reduction was implemented using Movielens dataset of 10M size. The experimental result shows RMSE, Precision and Recall improvement of 0.21, 0.17 and 0.18 respectively in 1M dataset and 0.17, 0.14 and 0.20 in 10M dataset respectively over personalized questionnaire.


2021 ◽  
Vol 336 ◽  
pp. 05010
Author(s):  
Ziteng Wu ◽  
Chengyun Song ◽  
Yunqing Chen ◽  
Lingxuan Li

The interaction history between users and items is usually stored and displayed in the form of bipartite graphs. Neural network recommendation based on the user-item bipartite graph has a significant effect on alleviating the long-standing data sparseness and cold start of the recommendation system. The whole paper is based on the bipartite graph. An review of the recommendation system of graphs summarizes the three characteristics of graph neural network processing bipartite graph data in the recommendation field: interchangeability, Multi-hop transportability, and strong interpretability. The biggest contribution of the full paper is that it summarizes the general framework of graph neural network processing bipartite graph recommendation from the models with the best recommendation effect in the past three years: embedding layer, propagation update layer, and prediction layer. Although there are subtle differences between different models, they are all this framework can be applied, and different models can be regarded as variants of this general model, that is, other models are fine-tuned on the basis of this framework. At the end of the paper, the latest research progress is introduced, and the main challenges and research priorities that will be faced in the future are pointed out.


Author(s):  
Gandhali Malve ◽  
Lajree Lohar ◽  
Tanay Malviya ◽  
Shirish Sabnis

Today the amount of information in the internet growth very rapidly and people need some instruments to find and access appropriate information. One of such tools is called recommendation system. Recommendation systems help to navigate quickly and receive necessary information. Many of us find it difficult to decide which movie to watch and so we decided to make a recommender system for us to better judge which movie we are more likely to love. In this project we are going to use Machine Learning Algorithms to recommend movies to users based on genres and user ratings. Recommendation system attempt to predict the preference or rating that a user would give to an item.


Sign in / Sign up

Export Citation Format

Share Document