Solid Oxide Fuel Cells: Status, Challenges and Opportunities

2006 ◽  
Vol 45 ◽  
pp. 1837-1846 ◽  
Author(s):  
Subhash C. Singhal

A solid oxide fuel cell (SOFC) electrochemically converts chemical energy of a fuel into electricity at temperatures from about 650 to 1000oC. SOFCs offer certain advantages over lower temperature fuel cells, notably ability to use CO as a fuel rather than being poisoned by it, and high grade exhaust heat for combined heat and power, or combined cycle gas turbine applications. This paper reviews the operating principle, materials for different cell and stack components, cell designs, and applications of SOFCs. Among different designs of solid oxide fuel cells (SOFCs), the electrical resistance of tubular SOFCs is high, and areal power density (W/cm2) and volumetric power density (W/cm3) low. Planar SOFCs, in contrast, are capable of achieving very high power densities.

2014 ◽  
Vol 61 (1) ◽  
pp. 177-190
Author(s):  
L. Zhu ◽  
L. Zhang ◽  
F. Zhao ◽  
A. V. Virkar

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040038
Author(s):  
Yeageun Lee ◽  
Jianhuang Zeng ◽  
Chunhua Zheng ◽  
Wonjong Yu ◽  
Suk Won Cha ◽  
...  

To study the geometrical scale dependency of thin film solid oxide fuel cells (SOFCs), we fabricated three thin films SOFCs which have the same cross-sectional structure but different electrode areas of 1 mm2, 4 mm2 and 9 mm2. Since the activation and ohmic losses of SOFCs depend on their active region, we examined the variations of the power density of the cells with a Pt/YSZ/Pt structure and simulated the power density variations using the COMSOL software package.


Author(s):  
C. M. Colson ◽  
M. H. Nehrir ◽  
M. C. Deibert ◽  
M. R. Amin ◽  
C. Wang

Solid oxide fuel cells (SOFCs) are high-temperature, high-efficiency, combustionless electrochemical energy conversion devices that have potential for combined cycle applications. This paper intends to clarify and expand the efficiency discussions related to SOFC when operating in combined cycle (CC) systems. A brief analysis of the first and second thermodynamic laws is conducted and, building upon a previously developed SOFC dynamic model, operating fuel heating values are determined by utilizing the semi-empirical gas phase heat capacity method. As a result, accurate SOFC stack operational simulations are conducted to calculate its efficiency based on actual thermodynamic parameters. Furthermore, an analysis is conducted of a combined SOFC-CC system using dynamic modeling. Simulation results are given, which are intended to aid researchers in evaluating hybrid SOFC-CC generation systems.


2019 ◽  
Vol 44 (59) ◽  
pp. 31475-31487 ◽  
Author(s):  
Cornelia Bischof ◽  
Andreas Nenning ◽  
Andreas Malleier ◽  
Lukas Martetschläger ◽  
Andre Gladbach ◽  
...  

2014 ◽  
Vol 1070-1072 ◽  
pp. 488-491
Author(s):  
Xiu Ling Yu ◽  
Ming Fei Shi

SrFe0.9Al0.1O3-δ(SFA) powder was mixed with a different mass content of SDC 10, 20 and 30 wt.% to form SFA-SDC composite cathodes subsequently investigated as potential IT-SOFC cathodes on LSGM electrolytes. No obvious reaction products between SDC (or LSGM) and SFA occur under test for the cathode of SOFCs. As SOFC cathodes, the area-specific resistances of the SFA-SDC cathodes on the LSGM electrolyte with SDC 10, 20 and 30 wt.% at 800 oC are 0.089, 0.068 and 0.087 Ω cm2, respectively. The peak power density of the SFA-SDC20 on a 300 μm-thick LSGM electrolyte reach 512 mW cm−2 at 800 °C.


2012 ◽  
Vol 22 (33) ◽  
pp. 17113 ◽  
Author(s):  
Kang Taek Lee ◽  
Hee Sung Yoon ◽  
Jin Soo Ahn ◽  
Eric D. Wachsman

Sign in / Sign up

Export Citation Format

Share Document