The Mechanical Behaviour of Silicon Diaphragms for Micromachined Capacitive Pressure Sensor

2008 ◽  
Vol 54 ◽  
pp. 422-427
Author(s):  
Juan Ren ◽  
David Cheneler ◽  
Mike Ward ◽  
Peter Kinnell

Single crystal silicon diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. When designing such a sensor it is usual to assume that the silicon is an isotropic material and the average elastic constants are used. However, the mechanical properties of single crystal silicon are orthotropic, and this has an important effect on the mechanical behaviour of silicon diaphragms under pressure. In this work, the deflections of orthotropic silicon circular diaphragms which are orientated against the (100) and the (110) planes are presented. It is found that by assuming silicon is isotropic material, the maximum stress is underestimated by 9.4% for (110) orientated silicon diaphragms, while the maximum stress is underestimated by 8% for (100) orientated silicon diaphragms. Therefore, when a silicon diaphragm is used in a MEMS sensor, the orthotropic properties should be taken into account for accuracy. Finally, the performance of a capacitive sensor is predicted by using finite element method.

Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document