3D Printing of Calcia-Based Ceramic Core Composites

2014 ◽  
Vol 88 ◽  
pp. 65-69
Author(s):  
Huo Ping Zhao ◽  
Chun Sheng Ye ◽  
Zi Tian Fan

Three-dimensional printing has been used as a rapid freeform fabrication process to fabricate a wider range of green ceramic components with complex structures difficult to obtain using traditional ceramic fabrication process. In this study, calcia-based ceramic core composites were fabricated by three dimensional printing and sintering operation. The green bodies were printed using a CaO/TiO2powder mixture as a precursor material and ethylene glycol as a binder. They were sintered at 1400-1500 °C for 2 h. The phases and microstructures of these samples were characterized by X-ray diffraction and scanning electron microscopy. The effect of TiO2content and the sintering temperature on the density, hydration resistance and bending strength of the sintered bodies was investigated. It was found that increment of TiO2content and sintering temperature would result in an increase of density of the sintered bodies and then increase of hydration resistance and bending strength.

2021 ◽  
Vol 926 (1) ◽  
pp. 012080
Author(s):  
C Amni ◽  
Marwan ◽  
S Aprilia ◽  
E Indarti

Abstract Three-dimensional printing (3DP) provides a fast and easy fabrication process without demanding post-processing. 3D-bioprinting is a special class in 3DP. Bio-printing is the process of accurately 3DP structural design using filament. 3D bio-printing technology is still in the development stage, its application in various engineering continues to increase, such as in tissue engineering. As a forming material in 3D printing, many types of commercial filaments have been developed. Filaments can be produced from either natural or synthetic biomaterials alone, or a combination of the two as a hybrid material. The ideal filament must have precise mechanical, rheological and biological properties. Polycaprolactone (PCL) is specifically developed and optimized for bio-printing of 3D structures. PCL is a strategy in 3D printing to better control interconnectivity and porosity spatially. Structural stability and less sensitive properties environmental conditions, such as temperature, humidity, etc make PCL as an ideal material for the FDM fabrication process. In this review, we provide an in-depth discussion of current research on PCL as a filament currently used for 3D bio-printing and outline some future perspectives in their further development.


2018 ◽  
Vol 941 ◽  
pp. 2196-2199 ◽  
Author(s):  
Koki Nonaka ◽  
Soshu Kirihara

Additive manufacturing (AM) and three-dimensional printing (3DP) technologies are being developed for use in manufacturing. In this study, a new AM technology, laser stereo-lithography, that enables to fabricate ceramic components in a single process is developed. This method is demonstrated with alumina under various laser conditions.


2004 ◽  
Vol 860 ◽  
Author(s):  
Nathan B. Crane ◽  
Emanuel M. Sachs ◽  
Andreas Frank

ABSTRACTSolid freeform fabrication (SFF) processes such as three-dimensional printing (3DP) and selective laser sintering (SLS) produce porous bodies that must be densified for many applications. New homogenous infiltration techniques can produce dense, homogenous parts of selected standard alloys, but the increased infiltration temperature dramatically increases creep deflection under self-weight. This paper reports on a method that improves dimensional stability by reducing creep deflection rates at high temperature. This method is applicable to all metal skeletons that must be strengthened without increasing shrinkage. In this method, the skeletons are reinforced by the addition of nanometer-sized particles dispersed in a liquid. The liquid is applied to the structure either during 3DP printing or after forming (3DP, SLS, pressing). The liquid is then evaporated, depositing the metal in the skeleton. The metal nanoparticles are sintered to density below the sintering temperature of the micron-scale skeleton particles. This concept is demonstrated using a suspension of 8–10 nm iron particles infiltrated into lightly sintered porous steel skeletons. When heated with an unsupported overhang to a typical infiltration temperature, creep deflection was reduced 50–80% with 0.5–1 wt% added metal.


Author(s):  
Pawan Sharma ◽  
Pulak M Pandey

In the present work, a rapid tooling process using three-dimensional printing and pressureless microwave sintering has been developed for the fabrication of biodegradable pure iron. Carbonyl iron particles were used for sample preparation and phosphate-based investment material was used for mould fabrication. Cylindrical samples were fabricated successfully using the developed rapid tooling process. The fabrication experiments were planned based on response surface methodology to evaluate the effect of microwave sintering parameters, namely sintering temperature, heating rate and soaking time on sintered density, shrinkage and compressive yield strength. The results showed that sintered density and compressive yield strength increased with the rise in sintering temperature from α to γ iron transformation temperature and were found to decrease with further rise in temperature. The shrinkage was found to increase with the increase in sintering temperature. Moreover, with the increase in soaking time and decrease in heating rate, sintered density, shrinkage and compressive yield strength were found to increase. Scanning electron microscopy and the X-ray diffraction plot of the fabricated iron samples showed that even without the application of pressure proper bonding of carbonyl iron particles was achieved. Mould material contamination or oxidation was not evidenced in the experiments. A multi-objective optimization using genetic algorithm was performed to obtain optimum microwave sintering parameters for maximum sintered density as well as compressive strength and minimum shrinkage. A case study on the fabrication of scaffold for human skull was performed to test the efficacy of the developed rapid tooling process.


Author(s):  
He Li ◽  
Yongsheng Liu ◽  
Yansong Liu ◽  
Kehui Hu ◽  
Zhigang Lu ◽  
...  

Ceramic green bodies fabricated by stereolithography-based three-dimensional printing technology often have high loading of ultraviolet curable resins, which produce undesirable phenomena such as cracking, deformation, and blistering during the debinding process. Results showed that compared to argon and vacuum, air atmosphere provided higher flexural strength owing to the elevated density. The differences in microstructure between specimens prepared under these atmospheres were attributed to exothermic oxidation reactions occurred under air when compared to endothermic pyrolysis reactions under vacuum and argon. The debinding atmosphere showed little effect on crystallite size due to the elevated sintering temperature, which would determine the final crystallite size of Al2O3. Debinding under air atmosphere resulted in flexural strength of 176.69 MPa and open porosity of 23.4%. The flexural strength of the ceramics debinded in air was 21.6% higher than the ceramics debinded in argon atmosphere.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7271 ◽  
Author(s):  
Wen Liao ◽  
Lin Xu ◽  
Kaijuan Wangrao ◽  
Yu Du ◽  
Qiuchan Xiong ◽  
...  

With the development of technology, tissue engineering (TE) has been widely applied in the medical field. In recent years, due to its accuracy and the demands of solid freeform fabrication in TE, three-dimensional printing, also known as additive manufacturing (AM), has been applied for biological scaffold fabrication in craniofacial and dental regeneration. In this review, we have compared several types of AM techniques and summarized their advantages and limitations. The range of printable materials used in craniofacial and dental tissue includes all the biomaterials. Thus, basic and clinical studies were discussed in this review to present the application of AM techniques in craniofacial and dental tissue and their advances during these years, which might provide information for further AM studies in craniofacial and dental TE.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094616
Author(s):  
Fuwen Hu ◽  
Wei Wang ◽  
Jingli Cheng ◽  
Yunchang Bao

Recent advances in three-dimensional printing technologies provide one way not only to speed up freeform fabrication but also to exert programmable control over mechanical properties. Besides, origami-inspired structures, origami-inspired metamaterials, and even origami-inspired robotics primarily demonstrate the promising potential for innovative inspirations of engineering solutions. The motivation of this work is to explore a fully programmable robotic perspective with a fusion of programmable metamaterials, programmable mechanics, and programmable fabrication. First, we proposed an illustrative roadmap for transforming an origami model into a fully programmable robotic system. Then, we introduced an origami spring model and revealed its shape-shifting geometry and intrinsic metamaterial mechanisms, especially the rarely switchable behavior from transverse compression to longitudinal stretchability, and the curvilinear deployment. Furthermore, we addressed the fabrication challenges of three-dimensional printable origami sheets considering three-dimensional printability, foldability with high elasticity, and good damage tolerance. Finally, we developed a fully soft manipulator in terms of the highly reversible compressibility of origami spring metamaterials. And we also devised a peristaltic crawling robot with undulatory movements induced by inclination deployment effect of origami spring metamaterials. Conceivably, the proposed fully programmable robotic system was demonstrated starting from programmable metamaterials, programmable mechanics, and programmable fabrication to programmable robotic behaviors. The contribution of this work also suggested that robotic morphing could be tunable by hierarchical programming from modeling and fabrication to actions.


Author(s):  
Vipra Guneta ◽  
Jun Kit Wang ◽  
Saeed Maleksaeedi ◽  
Ze Ming He ◽  
Marcus Thien Chong Wong ◽  
...  

One of the main goals of bone tissue engineering is the development of scaffolds that mimic both functional and structural properties of native bone itself. This study describes the preliminary work carried out to assess the viability of using three dimensional printing (3DP) technology for the fabrication of porous titanium scaffolds with lowered modulus and improved biocompatibility. 3DP enables the manufacturing of three dimensional (3D) objects with a defined structure directly from a Computer Aided Design (CAD). The overall porosity of the 3D structures is contributed by the presence of both pores-by-process (PBP) and pores-by-design (PBD). This study mainly focuses on the PBP, which are formed during the sintering step as the result of the removal of the binding agent polyvinyl alcohol (PVA). Sintering temperatures of 1250oC, 1350oC and 1370oC were used during the fabrication process. Our results showed that by varying the binder percentage and the sintering temperature, pores with diameters in the range of approximately 17-24 μm could be reproducibly achieved. Other physical properties such as surface roughness, porosity and average pore size were also measured for all sample groups. Results from subsequent cell culture studies using adipose tissue-derived mesenchymal stem cells (ASCs) showed improved attachment, viability and proliferation for the 3DP titanium samples as compared to the two-dimensional (2D) dense titanium samples. Hence, based on our current preliminary studies, 3DP technology can potentially be used to fabricate customized, patient-specific metallic bone implants with lowered modulus. This can effectively help in prevention of stress-shielding, and enhancement of implant fixationin vivo. It is envisioned that an optimized combination of binder percentage and sintering temperature can result in the fabrication of scaffolds with the desired porosity and mechanical properties to fit the intended clinical application.


Sign in / Sign up

Export Citation Format

Share Document