scholarly journals Current research in development of polycaprolactone filament for 3D bioprinting: a review

2021 ◽  
Vol 926 (1) ◽  
pp. 012080
Author(s):  
C Amni ◽  
Marwan ◽  
S Aprilia ◽  
E Indarti

Abstract Three-dimensional printing (3DP) provides a fast and easy fabrication process without demanding post-processing. 3D-bioprinting is a special class in 3DP. Bio-printing is the process of accurately 3DP structural design using filament. 3D bio-printing technology is still in the development stage, its application in various engineering continues to increase, such as in tissue engineering. As a forming material in 3D printing, many types of commercial filaments have been developed. Filaments can be produced from either natural or synthetic biomaterials alone, or a combination of the two as a hybrid material. The ideal filament must have precise mechanical, rheological and biological properties. Polycaprolactone (PCL) is specifically developed and optimized for bio-printing of 3D structures. PCL is a strategy in 3D printing to better control interconnectivity and porosity spatially. Structural stability and less sensitive properties environmental conditions, such as temperature, humidity, etc make PCL as an ideal material for the FDM fabrication process. In this review, we provide an in-depth discussion of current research on PCL as a filament currently used for 3D bio-printing and outline some future perspectives in their further development.

2021 ◽  
Vol 28 ◽  
Author(s):  
Xiaohong Li ◽  
Liang Wen ◽  
Jiao Liu ◽  
Xiaohong Wang

: End-stage liver diseases have long been a threat to human health, and so far, the treatment of these diseases lacks of effective means. Allogenic organ transplantation has become the last straw for most of the patients with end-stage liver diseases. However, this technique has been greatly limited by the serious shortage of donors and other factors, such as immune rejection, drug syndrome, and high cost. Recently, the emergence of three-dimensional (3D) bioprinting technologies, together with the magnetic resonance imaging (MRI) and computed tomography (CT) techniques, has driven the rapid growth of this field toward liver therapies. There are several basic requirements for liver 3D bioprinting. From information collection of diseased livers, to 3D printing of liver substitutes (containing the major structural, material and functional characters), and to clinical applications, suitable ‘bioinks’ and ‘bioprinters’ have played essential roles. In this review, we highlight the advanced ‘bioinks’ and ‘bioprinters’ that have been used for vascularized and innervated liver tissue 3D bioprinting. Further studies for the incorporation of biliary networks in the bioartificial livers have been emphasized. It is expected that when all the bottle-neck problems for liver 3D bioprinting are solved, batch (i.e. mass) and personalized production of bioartificial livers will make it very easy to treat end-stage liver diseases.


Author(s):  
K. G. Siree ◽  
T. M. Amulya ◽  
T. M. Pramod Kumar ◽  
S. Sowmya ◽  
K. Divith ◽  
...  

Three-dimensional (3D) printing is a unique technique that allows for a high degree of customisation in pharmacy, dentistry and in designing of medical devices. 3D printing satiates the increasing exigency for consumer personalisation in these fields as custom-made medicines catering to the patients’ requirements are novel advancements in drug therapy. Current research in 3D printing indicates towards reproducing an organ in the form of a chip; paving the way for more studies and opportunities to perfecting the existing technique. In addition, we will also attempt to shed light on the impact of 3D printing in the COVID-19 pandemic.


2016 ◽  
Author(s):  
Hongxing Luo ◽  
Zhongmin Wang

We comment on the recent developments and problems of three-dimensional printing in cardiology. Since there are currently no standards or consensuses for 3D printing in clinical medicine and the technology is at its infancy in cardiology, it’s very important to detail the procedures to allow more similar studies to further our understandings of this novel technology. Most studies have employed computed tomography to obtain source data for 3D printing, the use of real-time 3D transesophageal echocardiography for data acquisition remains rare, so it would be very valuable and inspiring to detail the image postprocessing steps, or the reliability of the study results will be doubtful.


2017 ◽  
Vol 32 (4) ◽  
pp. 429-442 ◽  
Author(s):  
Gang Zhou ◽  
Qianyi Han ◽  
Jun Tai ◽  
Beibei Liu ◽  
Jing Zhang ◽  
...  

Recently, more and more researchers have focused on airway stent applied in tracheomalacia. The airway stents for clinical application were usually manufactured in accordance with a fixed pattern, which were difficult to perfect match with children, especially infants. Digital light procession of light curing acrylate resin implantation showed higher accuracy and printing speed over traditional three-dimensional printing techniques. In this article, a novel personalized airway stent was developed by digital light procession three-dimensional printing and was modified by collagen I extracted from the fish scales. The morphology of the collagen-modified airway stent was examined by scanning electron microscopy, and the chemical structures were examined by attenuated total internal reflectance Fourier transform infrared spectroscopy. The biocompatibility of this synthetic acrylate/collagen composite airway stent was characterized by water contact angle test and cell culture. The results confirmed that the composite airway stent was hydrophilic and non-cytotoxic toward a cultured human bronchial epithelial cell line with good cell viability and show excellent physicochemical and biological properties. In conclusion, this study presented the three-dimensional printing composite acrylate and collagen airway stent may have potential in customized treatment for tracheomalacia.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Marcin Metlerski ◽  
Katarzyna Grocholewicz ◽  
Aleksandra Jaroń ◽  
Mariusz Lipski ◽  
Grzegorz Trybek ◽  
...  

Three-dimensional printing is a rapidly developing area of technology and manufacturing in the field of oral surgery. The aim of this study was comparison of presurgical models made by two different types of three-dimensional (3D) printing technology. Digital reference models were printed 10 times using fused deposition modelling (FDM) and digital light processing (DLP) techniques. All 3D printed models were scanned using a technical scanner. The trueness, linear measurements, and printing time were evaluated. The diagnostic models were compared with the reference models using linear and mean deviation for trueness measurements with computer software. Paired t-tests were performed to compare the two types of 3D printing technology. A P value < 0.05 was considered statistically significant. For FDM printing, all average distances between the reference points were smaller than the corresponding distances measured on the reference model. For the DLP models, the average distances in the three measurements were smaller than the original. Only one average distance measurement was greater. The mean deviation for trueness was 0.1775 mm for the FDM group and 0.0861 mm for the DLP group. Mean printing time for a single model was 517.6 minutes in FDM technology and 285.3 minutes in DLP. This study confirms that presurgical models manufactured with FDM and DLP technologies are usable in oral surgery. Our findings will facilitate clinical decision-making regarding the best 3D printing technology to use when planning a surgical procedure.


2013 ◽  
Vol 397-400 ◽  
pp. 970-980 ◽  
Author(s):  
Noor A. Ahmed ◽  
J.R. Page

The phenomenal growth in three-dimensional printing technology has the potential of ushering in the next wave of industrial revolution. As part of an advanced project design conducted at the Aerospace Engineering of the University of New South, the concept of a printable unmanned aerial vehicle was explored. A subsequent small scale test model was manufactured using three-dimensional printing technology for wind tunnel testing and validation. The exercise demonstrates the huge potential of such printing technology in future aircraft designs.Key words: 3D printing, design, manufacture, UAV


Author(s):  
Hui Wang ◽  
Zhonghan Wang ◽  
He Liu ◽  
Jiaqi Liu ◽  
Ronghang Li ◽  
...  

Although there have been remarkable advances in cartilage tissue engineering, construction of irregularly shaped cartilage, including auricular, nasal, tracheal, and meniscus cartilages, remains challenging because of the difficulty in reproducing its precise structure and specific function. Among the advanced fabrication methods, three-dimensional (3D) printing technology offers great potential for achieving shape imitation and bionic performance in cartilage tissue engineering. This review discusses requirements for 3D printing of various irregularly shaped cartilage tissues, as well as selection of appropriate printing materials and seed cells. Current advances in 3D printing of irregularly shaped cartilage are also highlighted. Finally, developments in various types of cartilage tissue are described. This review is intended to provide guidance for future research in tissue engineering of irregularly shaped cartilage.


2022 ◽  
Vol 14 (1) ◽  
pp. 32-39
Author(s):  
Sachit Anand ◽  
Nellai Krishnan ◽  
Prabudh Goel ◽  
Anjan Kumar Dhua ◽  
Vishesh Jain ◽  
...  

Background: In cases with solid tumors, preoperative radiological investigations provide valuable information on the anatomy of the tumor and the adjoining structures, thus helping in operative planning. However, due to a two-dimensional view in these investigations, a detailed spatial relationship is difficult to decipher. In contrast, three-dimensional (3D) printing technology provides a precise topographic view to perform safe surgical resections of these tumors. This systematic review aimed to summarize and analyze current evidence on the utility of 3D printing in pediatric extra-cranial solid tumors. Methods: The present study was registered on PROSPERO—international prospective register of systematic reviews (registration number: CRD42020206022). PubMed, Embase, SCOPUS, and Google Scholar databases were explored with appropriate search criteria to select the relevant studies. Data were extracted to study the bibliographic information of each article, the number of patients in each study, age of the patient(s), type of tumor, organ of involvement, application of 3D printing (surgical planning, training, and/or parental education). The details of 3D printing, such as type of imaging used, software details, printing technique, printing material, and cost were also synthesized. Results: Eight studies were finally included in the systematic review. Three-dimensional printing technology was used in thirty children with Wilms tumor (n = 13), neuroblastoma (n = 7), hepatic tumors (n = 8), retroperitoneal tumor (n = 1), and synovial sarcoma (n = 1). Among the included studies, the technology was utilized for preoperative surgical planning (five studies), improved understanding of the surgical anatomy of solid organs (two studies), and improving the parental understanding of the tumor and its management (one study). Computed tomography and magnetic resonance imaging were either performed alone or in combination for radiological evaluation in these children. Different types of printers and printing materials were used in the included studies. The cost of the 3D printed models and time involved (range 10 h to 4–5 days) were reported by two studies each. Conclusions: 3D printed models can be of great assistance to pediatric surgeons in understanding the spatial relationships of tumors with the adjacent anatomic structures. They also facilitate the understanding of families, improving doctor–patient communication.


2022 ◽  
Vol 50 (1) ◽  
pp. 030006052110686
Author(s):  
Jing-Li Liu ◽  
Xin-Gen Liao ◽  
Xi-An Dai ◽  
Ji-Huan Zeng ◽  
Liang Deng ◽  
...  

Aggressive vertebral hemangioma (AVH) is a type of non-neoplastic and congenital developmental abnormality of spinal cord blood vessels. We report the innovative application of three-dimensional (3D) printing-assisted anterior and posterior combined surgery for treating a giant AVH. This could be a novel treatment in the future. A 44-year-old man suffered from persistent neck pain and limited limb mobility for approximately 2 weeks. An imaging examination showed the destruction of C2–4 vertebral bodies, and a giant lesion invaded the spinal cord. He underwent 3D printing-assisted anterior and posterior combined surgery. Postoperatively, his symptoms of persistent neck pain and limited limb mobility were alleviated. An imaging examination showed that internal fixation and the prosthesis were fixed in place, and the spinal canal was unobstructed. Treating a giant AVH by 3D printing-assisted anterior and posterior combined surgery is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document