Different Treatment Application of Illite Clay for Low Temperature Ceramics

2014 ◽  
Vol 92 ◽  
pp. 62-67
Author(s):  
Gaida Sedmale ◽  
Ingunda Sperberga ◽  
Maris Rundans ◽  
Liga Grase

Impact of chemical treatment by alkali of raw, dehydroxylated at 600 °C and intensively milled illite clay on structure, phase composition and some properties of sintered at lower temperatures ceramic materials were studied using DTA, X-ray diffraction (XRD), as well as scanning electron microscopy (SEM) and mercury intrusion porosimetry. DTA and XRD results show that alkaline activation of illite clay by sodium hydroxide leads to the slight structural changes of illite characterized by structural water losses showed from DTA and negligible decrease of illite and kaolinite, as well dolomite diffraction peaks on XRD. Additional treatment, intensive milling and in particular dehydroxylation, contributes to the considerable changes in intensities of all effects on DTA-curves, especially for dehydroxylation endo-peak. It is shown that chemical treatment promotes the formation of rather amorphous and homogenous structure of sintered at 600°C respective ceramic samples and leads to the growth of the compressive strength.

2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


1987 ◽  
Vol 19 (8) ◽  
pp. 139-145
Author(s):  
G. Castillo ◽  
A. Ortega

The reutilization in agriculture of the sludge produced in the chemical treatment of sewage is investigated. Aluminium sulfate (50 mg/l) and sodium hydroxide (50 and 200 mg/l) are added to domestic sewage allowing it to settle and eliminating floating materials. Three kinds of raw chemical sludge are digested and dried. Their sanitary quality is determined by two bacterial indicators (total and fecal coliforms) and one viral indicator (E. coli bacteriophage) and the fertilizing capability of digested and dry sludge by sowing leguminous crops (Phaseolus spp ) in soil with 11 tons/ha sludge application rate. Digested and dried sludge from conventional treatment in equal conditions to those of chemical sludge is used as reference. Sanitary quality results show that raw and digested chemical sludge are not recommended for use in agriculture due to their high microbiological contamination. Dry sludge could be considered for this purpose due to its low fecal organisms content. However the development of leguminous crops in soil with dry aluminium sludge application shows no seed germination. The results of leguminous growth in digested sludge of sodium hydroxide (200 mg/l) justify an additional treatment to adequate its sanitary quality for use in agriculture.


2021 ◽  
Vol 12 ◽  
pp. 204173142110190
Author(s):  
Jung-Hwan Lee ◽  
Ji-Young Yoon ◽  
Jun Hee Lee ◽  
Hae-Hyoung Lee ◽  
Jonathan C Knowles ◽  
...  

Extracellular vesicles (EVs), including exosomes, carry the genetic packages of RNA, DNA, and proteins and are heavily involved in cell-cell communications and intracellular signalings. Therefore, EVs are spotlighted as therapeutic mediators for the treatment of injured and dysfunctional tissues as well as biomarkers for the detection of disease status and progress. Several key issues in EVs, including payload content and bioactivity, targeting and bio-imaging ability, and mass-production, need to be improved to enable effective therapeutics and clinical translation. For this, significant efforts have been made recently, including genetic modification, biomolecular and chemical treatment, application of physical/mechanical cues, and 3D cultures. Here we communicate those recent technological advances made mainly in the biogenesis process of EVs or at post-collection stages, which ultimately aimed to improve the therapeutic efficacy in tissue healing and disease curing and the possibility of clinical translation. This communication will help tissue engineers and biomaterial scientists design and produce EVs optimally for tissue regenerative therapeutics.


2004 ◽  
Vol 812 ◽  
Author(s):  
Nobutoshi Fujii ◽  
Kazuhiro Yamada ◽  
Yoshiaki Oku ◽  
Nobuhiro Hata ◽  
Yutaka Seino ◽  
...  

AbstractPeriodic 2-dimensional (2-D) hexagonal and the disordered pore structure silica films have been developed using nonionic surfactants as the templates. The pore structure was controlled by the static electrical interaction between the micelle of the surfactant and the silica oligomer. No X-ray diffraction peaks were observed for the disordered mesoporous silica films, while the pore diameters of 2.0-4.0 nm could be measured by small angle X-ray scattering spectroscopy. By comparing the properties of the 2-D hexagonal and the disordered porous silica films which have the same porosity, it is found that the disordered porous silica film has advantages in terms of the dielectric constant and Young's modulus as well as the hardness. The disordered porous silica film is more suitable for the interlayer dielectrics for ULSI.


2012 ◽  
Vol 76 (3) ◽  
pp. 443-453 ◽  
Author(s):  
J. Plášil ◽  
K. Fejfarová ◽  
R. Skála ◽  
R. Škoda ◽  
N. Meisser ◽  
...  

AbstractTwo crystals of the uranyl carbonate mineral grimselite, ideally K3Na[(UO2)(CO3)3](H2O), from Jáchymov in the Czech Republic were studied by single-crystal X-ray diffraction and electron-probe microanalysis. One crystal has considerably more Na than the ideal chemical composition due to substitution of Na into KO8 polyhedra; the composition of the other crystal is nearer to ideal, and similar to synthetic grimselite. The presence of Na atoms in KO8 polyhedra, which are located in channels in the crystal structure, reduces their volume, and as a result the unit-cell volume also decreases. Structure refinement shows that the formula for the sample with the anomalously high Na content is (K2.43Na0.57)Σ3.00Na[(UO2)(CO3)3](H2O). The unit-cell parameters, refined in space group P2c, are a = 9.2507(1), c = 8.1788(1) Å, V = 606.14(3) Å3 and Z = 2. The crystal structure was refined to R1 = 0.0082 and wR1 = 0.0185 with a GOF = 1.33, based on 626 observed diffraction peaks [Iobs>3σ(I)].


2006 ◽  
Vol 70 (3) ◽  
pp. 319-328 ◽  
Author(s):  
M. Zema ◽  
S.C. Tarantino ◽  
A. Giorgiani

AbstractStructural modifications as a function of the degree of order (Q) in FeTa2O6 ferrotapiolite have been characterized by means of single-crystal X-ray diffraction (SC-XRD). A total of 26 datasets covering the range of Q between 0.154 and 1 have been obtained by thermal treatments followed by quenching of natural tapiolite crystals. Ordering of Fe2+ at the A sites and of Ta5+ at the B sites causes a linear increase in the a/c lattice constants ratio, as a consequence of a linear decrease of the c dimension and only slight modifications of the a parameter. Calibration of a/c vs. Q represents a very useful tool for a rapid determination of the degree of order of tapiolite samples. Polyhedral volumes of the two octahedral sites vary linearly with Q as a consequence of the different ionic radii of the two species. Both the sites remain almost regular at all Q values but the B site shows an increasing off-centre displacement of the cation with increasing Q. Observed structure factors of supercell reflections, characterized by l ≠ 3n, increase linearly as a function of Q, thus representing a further tool for a quick evaluation of the degree of order.


2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


2003 ◽  
Vol 802 ◽  
Author(s):  
R. G. Haire ◽  
S. Heathman ◽  
T. Le Bihan ◽  
A. Lindbaum ◽  
M. Iridi

ABSTRACTOne effect of pressure on elements and compounds is to decease their interatomic distances, which can bring about dramatic perturbations in their electronic nature and bonding, which can be reflected in changes in physical and/or chemical properties. One important issue in the actinide series of elements is the effect of pressure on the 5f-electrons. We have probed changes in electronic behavior with pressure by monitoring structure by X-ray diffraction, and have studied several actinide metals and compounds from thorium through einsteinium. These studies have employed angle dispersive diffraction using synchrotron radiation, and energy dispersive techniques via conventional X-ray sources. The 5f-electrons of actinide metals and their alloys are often affected significantly by pressure, while with compounds, the structural changes are often not linked to the involvement of 5 f-electron. We shall present some of our more recent findings from studies of selected actinide metals, alloys and compounds under pressure. A discussion of the results in terms of the changes in electronic configurations and bonding with regard to the element's position in the series is also addressed.


2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


Sign in / Sign up

Export Citation Format

Share Document