Geometric Evaluation of Forced Convective Flows across an Arrangement of Four Circular Cylinders

2017 ◽  
Vol 372 ◽  
pp. 110-121
Author(s):  
Martim dos Santos Pereira ◽  
Bruno Costa Feijó ◽  
Filipe Branco Teixeira ◽  
Liércio André Isoldi ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

The present study consists in a numerical evaluation of an arrangement formed by four cylinders submitted to an unsteady, two-dimensional, incompressible, laminar and forced convective flow. The geometric evaluation is performed through the Constructal Design method. The problem has two restrictions given by the sum of the area of ​​the cylinders and one occupation area and has three degrees of freedom: ST1/D (the ratio between the transverse pitch of the frontal cylinders and the diameter of the cylinders), ST2/D (the ratio between the transverse pitch of the posterior cylinders and the diameter of the cylinders) and SL/D (ratio between the longitudinal pitch of the frontal and posterior cylinders and the diameter of the cylinders). For all simulations the Reynolds number is kept constant, ReD = 100, and two different Prandtl numbers of Pr = 0.71 and 5.83 are considered, which simulates respectively the use of air and water as a fluid. The conservation equations of mass, momentum and energy are solved with the Finite Volume Method (FVM). The main objective is to evaluate the effect of the degrees of freedom on the drag coefficient (CD) and the Nusselt number (NuD) between the cylinders and the surrounding flow, as well as the optimal ST2/D values ​​for three ratios of ST1/D = 1.5, 3.0 and 4.0, these results being obtained for ratios of SL/D = 1.5 and 4.0. Results showed that the ratio changes of ST1/D and ST2/D have a great influence on the drag coefficients and on the Nusselt number of the arrangement formed by the four cylinders, as well as on the geometries leading to the best fluid dynamics and thermal performance.

2019 ◽  
Vol 18 (1) ◽  
pp. 57
Author(s):  
A. P. D. Aghenese ◽  
F. B. Teixeira ◽  
L. A. O. Rocha ◽  
L. A. Isoldi ◽  
J. F. Prolo Filho ◽  
...  

This work presents a numerical study on the geometric evaluation of forced convective flows over four staggered arrangement of four cylinders. The forced convective flow is considered incompressible, two-dimensional, laminar and unsteady. Geometry varies according to Constructal Design method. The objectives are the maximization of Nusselt number (NuD) and minimization of drag coefficient (CD) between the cylinders and the surrounding flow. Simulations were performed considering Reynolds numbers of ReD = 10, 40 and 150 and air as working fluid, i.e., Prandtl number is assumed Pr = 0.71. The problem presents three degrees of freedom: ST/D (ratio between transversal pitch of the intermediate cylinders and the cylinders diameter), SL1/D (ratio between the frontal and intermediate cylinders longitudinal pitch and the cylinders diameter) and SL2/D (ratio between the intermediate and posterior cylinders longitudinal pitch and the cylinders diameter). However, SL1/D and SL2/D measures were kept fixed at 1.5 and ST/D varies in the range 1.5 ≤ ST/D ≤ 5.0. The conservation equations of mass, momentum and energy conservation are solved with the Finite Volume Method (FVM). Optimal results for fluid-dynamic study in all ReD cases occurred for the lowest values of ST/D, i.e., (ST/D)o,f = 1.5. For thermal analysis, NuD behavior was assessed, where optimal results for ReD = 10 and 40 occurred for the highest values of ST/D, whilst, for ReD = 150, the optimal value was achieved for the intermediate ratio of ST/D = 4.0.


2019 ◽  
Vol 396 ◽  
pp. 155-163
Author(s):  
Ana Paula Del Aghenese ◽  
Eliander Manke Heinemann ◽  
Gabriel de Avila Barreto ◽  
Filipe Branco Teixeira ◽  
Liércio André Isoldi ◽  
...  

In the present work it is performed a study on the geometric evaluation of a pair of elliptical tubes subjected to external flow with forced convection by means of numerical approach. The objectives are the maximization of Nusselt number (NuD) and the minimization of drag coefficient (CD). The degrees of freedom for the pair of tubes arrangement are: the ratio between the transverse pitch and characteristic length of tubes (ST/D), where D = (A)1/2, the ratio of the main and secondary axes of the elliptical tube (a/b) and the angle of incidence of the flow on the pair of tubes (α). The simulations were carried out considering two-dimensional forced convective flows, in the laminar regime and incompressible conditions. For all configurations, Reynolds and Prandtl numbers are constant, ReD = 100 and Pr = 0.71. The Finite Volume Method (FVM) is used to solve conservation equations of mass, momentum and energy. The software Gmsh is used for creation of the geometries and generation of the meshes. Results showed that the degrees of freedom affected the fluid dynamic and thermal performance of the forced convective flow. According to the objectives outlined in this study, the best performance for the maximization of heat transfer was obtained when α = 0o, a/b = 1⁄2 and ST/D = 3.5. In the case of the fluid dynamics study, the optimal result for CD minimization occurred when α = 0o, a/b = 2.0 and ST/D = 4.0. Thus, the optimal geometry will depend on the indicator performance where the problem is evaluated.


2019 ◽  
Vol 396 ◽  
pp. 22-31
Author(s):  
Yuri T.B. Lima ◽  
Mateus das Neves Gomes ◽  
Camila F. Cardozo ◽  
Liércio André Isoldi ◽  
Elizaldo D. Santos ◽  
...  

This paper presents a biphasic two-dimensional numerical study of sea wave energy converters with operating principle being Oscillating Water Column (CAO) devices with two couples chambers. For the study of the geometric optimization, the Constructal Design method is applied in association with the exhaustive search method to determine the geometric arrangement that leads to the greatest hydropneumatic power available. The objective function is the maximization of hydropneumatic power converted by the device. The constraints of the problem are the inflow volumes of the hydropneumatic chamber (VE1, VE2), the total volumes (VT1, VT2) and the thicknesses of the device columns (e1, e3). The degrees of freedom analyzed were H1/L1(ratio between height and length of the hydropneumatic chamber of the first device), H2/L2 (ratio between height and length of the hydropneumatic chamber of the second device), H2 (height of the column dividing the two devices) and e2 (thickness of the column dividing the devices). In the present work the degree of freedom H6 (depth of immersion of the device) is kept constant and equal to H6 = 9.86 m. The Finite Volume Method (FVM) was used in the numerical solution of the equations employed. For the treatment of the interaction between the air and water phases, the Volume of Fluid (VOF) method was applied. The results show that the maximum hydropneumatic power available was 5715.2 W obtained for degrees of freedom H1/L1 = H2/L2 = 0.2613 and e2 = 2.22 m. The case of lower performance has a power value equal to 4818.5 W with degrees of freedom equal to H1/L1 = H2/L2 = 0.2613 and e2 = 0.1 m.


2016 ◽  
Vol 138 (10) ◽  
Author(s):  
G. Lorenzini ◽  
B. S. Machado ◽  
L. A. Isoldi ◽  
E. D. dos Santos ◽  
L. A. O. Rocha

The present work shows a numerical study of laminar, steady, and mixed convective flow inside lid-driven square cavity with intruded rectangular fin in its lower surface. The main purpose here is to maximize the heat transfer between the rectangular fin and the surrounding mixed convective flow inside a lid-driven cavity by means of constructal design. The problem is subject to two constraints, the lid-driven cavity and intruded fin areas. The ratio between the fin and cavity areas is kept fixed (ϕ = 0.05). The investigated geometry has one degree-of-freedom (DOF), the fin aspect ratio (H1/L1), which is varied in the range 0.1 ≤ H1/L1 ≤ 10. The aspect ratio of the cavity is maintained fixed (H/L = 1.0). The effect of the fin geometry over the Nusselt number is investigated for several Rayleigh (RaH = 103, 104, 105 and 106) and Reynolds numbers (ReH = 10, 102, 3.0 × 102, 5.0 × 102, 7.0 × 102 and 103). For all simulations, the Prantdl number is fixed (Pr = 0.71). The conservation equations of mass, momentum, and energy are numerically solved with the finite volume method. Results showed that fin geometry (H1/L1) has strong influence over the Nusselt number in the fin. It was also observed that the effect of H1/L1 over Nusselt number changes considerably for different Rayleigh numbers and for the lowest magnitudes of Reynolds numbers, for example, differences of nearly 770% between RaH = 106 and forced convective flow were observed for the lowest Reynolds number studied (ReH = 10).


2019 ◽  
Vol 18 (2) ◽  
pp. 98
Author(s):  
E. D. dos Santos ◽  
P. M. Rodrigues ◽  
L. A. Isoldi ◽  
J. F. Prolo Filho ◽  
L. A. O. Rocha ◽  
...  

In this work, it is investigated the geometric effect of rectangular fin inserted in a lid-driven square cavity over thermal performance of laminar, incompressible, steady and forced convective flows. This study is performed by applying Constructal Design to maximize the heat transfer between the fin and the cavity flow. For that, the problem is subjected to two constraints: area of the cavity and area of rectangular fin, and two degrees of freedom: height/length ratio of rectangular fin (H1/L1) and its position in upstream surface of the cavity (S/A1/2). It is considered here some fixed parameters, as the ratio between the fin and cavity areas (ϕ = 0.05), the aspect ratio of the cavity dimensions (H/L = 1.0) and Prandtl number (Pr = 0.71). The fin aspect ratio (H1/L1) was varied for three different placements of the fin at the upstream cavity surface (S/A1/2 = 0.1, 0.5 and 0.9) which represents a lower, intermediate and upper positions of the fin. The effects of the fin geometry over the spatial-averaged Nusselt number ( ) is investigated for three different Reynolds numbers (ReH = 10, 102 and 103). The conservation equations of mass, momentum and energy were numerically solved with the Finite Volume Method. Results showed that both degrees of freedom (H1/L1 and S/A1/2) had a strong influence over , mainly for higher magnitudes of Reynolds number. Moreover, the best thermal performance is reached when the fin is placed near the upper surface of the cavity for an intermediate ratio between height and length of rectangular fin, more precisely when (S/A1/2)o = 0.9 and (H1/L1)oo = 2.0.


2012 ◽  
Vol 11 (1-2) ◽  
pp. 77 ◽  
Author(s):  
E. D. Dos Santos ◽  
F. M. V. Da Silva ◽  
I. C. Acunha Jr. ◽  
M. M. Galarça ◽  
L. A. Isoldi ◽  
...  

The present study presents large eddy simulation (LES) of forced convective heat transfer in transient, two-dimensional, incompressible turbulent flows over a pair of cylinders with two different arrangements: 1) with two circular cylinders in tandem (both cylinders are in line with the streamwise direction of the flow, β = 0º) and 2) two side-by-side circular cylinders (where both cylinders are placed transversally to the streamwise direction of the flow, β = 90º). The dynamic Smagorinsky model is employed for the sub-grid treatment. The simulations are based on the finite volume method solution for the conservation equations of mass, momentum and energy. Both simulations are performed with Reynolds and Prandtl numbers of ReD = 22000 and Pr = 0.71, respectively. The results showed that the transient fluid dynamic and thermal patterns are strongly affected by the configuration of circular cylinders. The kind of arrangement led to a difference of nearly 20 % for time-averaged Nusselt number (NuD).


Author(s):  
Khudheyer Ahmed F. ◽  
Nawaf, Taha S.

Numerical investigation of forced convective flow in a 2-dimensional microchannel. This investigation is analyzed with nanoparticles SiO2 and water as a base fluid studying the influence of turbulence model inside multi geometrical channel (Triangular, Trapezoidal, Semi-circular, and Rectangular) by using "Finite Volume Method (FVM)". The heat flux is applied on the lower wall of channel and the upper is insulated. The diameter of nanoparticles is 20 nm. The Reynolds number ranges are from 10000 to 30000 for ratio of groove width (B) to channel height (H) was used 0.75. The volume fractions range is between 1-4%. Triangular channel score higher Nusselt number and lower friction factor than other cases against Reynolds number. When the volume fraction was increase, the Nusselt number increased and friction factor decreased, this gives 4% has the optimal properties.


2012 ◽  
Vol 11 (1-2) ◽  
pp. 85 ◽  
Author(s):  
C. H. Marques ◽  
L. A. Isoldi ◽  
E. D. Dos Santos ◽  
L. A. O. Rocha

The present paper shows a numerical study concerned with the geometrical optimization of a vortex tube device by means of Constructal Design for several inlet stagnation pressures. In the present study, it is evaluated a vortex tube with two-dimensional axisymmetric computational domain with dry air as the working fluid. The compressible and turbulent flows are numerically solved with the commercial CFD package FLUENT, which is based on the Finite Volume Method. The turbulence is tackled with the k-ε model into the Reynolds Averaged Navier-Stokes (RANS) approach. The geometry has one global restriction, the total volume of the cylindrical tube, and four degrees of freedom: d3/D (the ratio between the diameter of the cold outlet and the diameter of the vortex tube), d1/D (the ratio between the diameter of the inlet nozzle and the diameter of the vortex tube), L2/L (the ratio between the length of the hot exit annulus and the length of the vortextube) and D/L (the ratio between the diameter of the vortex tube and its length). The degree of freedom L2/L will be represented here by the cold mass fraction (yc). In the present work it is optimized the degrees of freedom yc and d3/D while the other degrees of freedom and the global restriction are kept fixed. The purpose here is to maximize the amount of energy extracted from the cold region (cooling effect) for several geometries, as well as, investigate the influence of the inlet stagnation pressure over the optimal geometries. Results showed an increase of the twice maximized cooling heat transfer rate of nearly 330 % from 300 kPa to 700 kPa. Moreover, the optimization showed a higher dependence of (d3/D)o for the lower range of inlet pressures, while the optimization is more dependent of yc,oo for higher inlet stagnation pressures.


2021 ◽  
Vol 16 (2) ◽  
pp. 207-217
Author(s):  
Gerusa C. Rodrigues ◽  
Giulio Lorenzini ◽  
Lucas C. Victoria ◽  
Igor S. Vaz ◽  
Luiz A.O. Rocha ◽  
...  

An Earth-Air Heat Exchanger (EAHE) is a device that consists of one or more buried ducts through which air is forced to flow. The surrounding soil is responsible for enabling thermal exchanges along with the installation, making the temperature at the outlet milder than the inlet. The objective of this work is to ally a numerical-analytical approach with the Constructal Design method and Exhaustive Search technique to minimize the soil volume occupation (V), minimize the air flow pressure drop (PD), and maximize the thermal potential (TP) of a T-shaped EAHE. Starting from a conventional EAHE composed of a straight duct, called Reference Installation (RI), two degrees of freedom (DOF) were considered: the ratio between the length of the bifurcated branch and the length of the main branch (L1/L0) and the ratio between the diameter of the bifurcated branch and the diameter of the main branch (D1/D0). Comparing with RI, different T-shaped EAHE geometries were identified to reduce V by 23% and PD by 62% and to increase TP by 21%; and when these three performance parameters were concomitantly considered another T-shaped EAHE geometric configuration allowed to reach an improvement of around 27% when compared with the RI.


2017 ◽  
Vol 372 ◽  
pp. 152-162 ◽  
Author(s):  
Bruno Costa Feijó ◽  
Martim dos Santos Pereira ◽  
Filipe Branco Teixeira ◽  
Liércio André Isoldi ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

The purpose of this work is to present a numerical study of a two-dimensional channel with two triangular fins submitted to a laminar flow with forced convection heat transfer, evaluating the geometry of the first fin through the Constructal Design method. The main objectives are to maximize the heat transfer rate and minimize the pressure difference between the inlet and outlet flow of the channel for different dimensions of the first channel fin, considering the same Reynolds (ReH = 100) and Prandtl numbers (Pr = 0.71). The problem is subjected to three constraints given by the channel area, fin area and maximum occupancy area of ​​each fin. The system has three degrees of freedom. The first is given by the ratio between height and length of the channel, which is kept fixed, H/L = 0.0625. The other two are the ratio between height and width of the upstream fin base (H3/L3) positioned on the lower surface of the channel, and the ratio between height and width of the downstream fin (H4/L4) positioned on the upper surface of the channel, which is also kept fixed, H4/L4 = 1.11. The problem is simulated for three different values ​​of the fraction area of upstream fin (φ1 = 0.1, 0.2 and 0.3). For the numerical approach of the problem, the conservation equations of mass, momentum and energy are solved using the finite volume method (MVF). The results showed that a ratio of φ1 = 0.2 is the one that best meets the proposed multi-objective. It was also observed that φ1 = 0.1 led to a better fluid dynamics performance with a ratio between the best and the worst performance for fluid dynamics case of 25.2 times. For φ1 = 0.3, the best thermal performance is achieved, where the optimal case has a performance 65.75% higher than that reached for the worst case.


Sign in / Sign up

Export Citation Format

Share Document