Magnetic and Mechanical Properties of the Amorphous Alloys

2018 ◽  
Vol 382 ◽  
pp. 58-62 ◽  
Author(s):  
Vladimir Tsepelev ◽  
Yuri Starodubtsev ◽  
Kai Ming Wu ◽  
Nadezhda Tsepeleva ◽  
Alisa Taushkanova

It is clearly seen that the magnetic induction of the amorphous ribbon produced by conventional technology implying heating up to 1490 °С increases as the thickness of specimens increases, with this growth being especially intensive at the 100 А/m magnetic field strength. At the same time, the melt preparation supplemented by overheating contributes to the magnetic induction stabilization, i.e. magnetic induction is essentially independent of the ribbon’s thickness. It is only at high values of h that a slight increase in magnetic induction becomes evident. The fracture diameter of the free side surface is linearly increasing as the annealing temperature increases. The structure has been shown to influence magnetic and mechanical properties of the material in preparing the melt before casting.

2011 ◽  
Vol 415-417 ◽  
pp. 527-531
Author(s):  
Da Guo Jiang ◽  
Cao Bing Yang ◽  
Guo Tai Zheng

Prepared rare-earth La modified amorphous ribbon by doping Rare-earth La in Fe78Si9B13amorphous alloy. Investigated rare-earth content and annealing temperature as well as their influence on the magnetic induction effect and its amplitude. The results show that, when magnetic field is less than 1356 A/m, with the increase of Rare-earth content,the magnetic induction effect first increased and then decreased, when the magnetic field strength greater than 1356 A/m, the Rare-earth content influence little on magnetic induction effect, changing amplitude of magnetic induction effect shows first increased and then decreased with increasing Rare-earth content.


2010 ◽  
Vol 152-153 ◽  
pp. 587-591 ◽  
Author(s):  
Da Guo Jiang

Prepared rare-earth La modified amorphous ribbon by doping Rare-earth La in Fe78Si9B13 amorphous alloy. Investigated rare-earth content and temperature, as well as their influence on the magnetic induction effect and it’s amplitude. The results show that, when magnetic field is less than 1356 A / m, with the increase of Rare-earth content ,the magnetic induction effect first increased and then decreased, when the magnetic field strength greater than 1356 A / m, the Rare-earth content influence little on magnetic induction effect , changing amplitude of magnetic induction effect shows first increased and then decreased with increasing Rare-earth content; temperature influence little on the magnitude of magnetic induction effect.


2020 ◽  
Vol 12 (3) ◽  
pp. 03026-1-03026-4
Author(s):  
T. L. Tsaregradskaya ◽  
◽  
A. M. Kuryliuk ◽  
I. V. Ovsiienko ◽  
G. V. Saenko ◽  
...  

2020 ◽  
Vol 15 (2) ◽  
pp. 102-106
Author(s):  
Evgeniy Masyutkin ◽  
Boris Avdeev

In agriculture, a large number of different lubricating and cooling liquids are used in the operation, maintenance and repair of agricultural machinery. In the process of use, technical fluids become contaminated with foreign impurities and require periodic cleaning. Magnetic sedimentation tanks are well suited for this. The studies were carried out in order to determine the parameters (the magnitude and gradient of the magnetic field strength, the height of the apparatus, the concentration of particles), at which coagulation of particles is observed in a non-uniform magnetic settler. The experiments were carried out on a laboratory setup for studying coagulation in the working area of a magnetic sump. For a given magnetic system, the geometric dimensions of the apparatus were determined in such a way that the magnetic field acts in the entire working volume of the sump and effectively traps foreign metal impurities. The value of the magnetic induction of the field B is proportional to the square of the distance from the investigated point to the pole of the electromagnet Н0. At a distance of 300 mm and further, the magnetic force has almost no effect on the particle, so the height of the sump should be less. The lowest magnetic induction is observed in the middle of the coil. A decrease in the current in the winding entails a reduction in the length of the floccule; magnetic coagulation takes place when the concentration of particles in the coolant is more than 0.3 g/l, with a lower content, it is not observed due to significant distances between the particles; the effect of coagulation is noted in the entire area of action of the magnetic field, while the length of the floccules decreases with a decrease in concentration. The distance at which the effect of coagulation between particles is observed is determined by a complex function that depends on the current in the winding, the field strength, their distance from the pole of the electromagnet, and also on the size of the particles.


2010 ◽  
Vol 148-149 ◽  
pp. 644-648
Author(s):  
Guo Tai Zheng ◽  
Zhao Hui Liu ◽  
Da Guo Jiang

The effects of AC frequency, magnetic field strength, ribbon length and test temperature on the Fe72Co8Si15B5 amorphous ribbon’s magnetic impedance were studied. The results showed that the resistance, reactance and impedance of amorphous ribbons increased with the increase of AC frequency, but decreased as magnetic field strength decreased; the rangeability of resistance, reactance and impedance increased as AC frequency and magnetic field strength increased; the resistance and reactance increased as ribbon length increased; the ribbon had a good temperature stability in resistance.


2013 ◽  
Vol 302 ◽  
pp. 76-81 ◽  
Author(s):  
H.W. Yang ◽  
M.J. Tan ◽  
R.D. Li ◽  
J.Q. Wang

The effect of the addition of 0.2-0.65 at% of V on the glass forming ability and mechanical properties of Al88Y7Fe5 alloy were investigated. The addition of V in this range had little effect on the glass forming ability of the alloy, but lowered the tensile strength of the amorphous ribbon. The fracture surface of Al88Y7Fe5 amorphous ribbons was typical vein pattern for ductile metallic glasses, however, that of the alloy with 0.5% V addition changed to two different regions, i.e., vein pattern region and smooth region. At high magnification, the smooth region was composed of nanometer sized corrugations, which is typical for brittle metallic glasses.


2018 ◽  
Vol 38 (8) ◽  
pp. 731-738
Author(s):  
Yifan Huang ◽  
Weicheng Jiao ◽  
Yue Niu ◽  
Guomin Ding ◽  
Rongguo Wang

Abstract The aim of the paper is to develop a novel nanocomposite with high mechanical properties. The mechanical properties are improved by aligning the Fe3O4/multi-walled carbon nanotubes (MWCNTs) into a highly oriented manner in epoxy resin (EP) via a low magnetic field. Fe3O4 nanoparticles were tethered onto the surface of MWCNTs by a novel water-in-oil (W/O) method without heating at high temperatures or the protection of inert gas. Then, the modified magnetic MWCNTs (m-MWCNTs) were added into EP and aligned in a low magnetic field (100 mT). A method was presented to estimate the minimum magnetic field strength for aligning the m-MWCNTs. Besides, the morphology and microstructures of the fabricated m-MWCNTs and m-MWCNTs/EP highly ordered nanocomposites were characterized. Finally, the mechanical properties measurements were performed. The results of the experiments showed that this method was very efficient in aligning m-MWCNTs embedded in polymer matrix leading to a highly ordered composite for improving mechanical properties.


2003 ◽  
Vol 12 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Vasile Murariu ◽  
Jan Svoboda

The current practice of assessing the efficiency of recovery of magnetite and ferrosilicon by drum magnetic separators is to conduct Davis tube tests at a magnetic induction equal to that on the surface of the drum. It is, however, the magnetic force or the force index, and not the magnetic field strength, that are decisive in the operation of a magneticseparator. Since the magneticfield gradients generated by Davis tube and drum magnetic separators are generally different, it is unlikely that the above practice would yield correct information. This article analyses the patterns of the force index generated by drum magnetic separators and a Davis tube operated at different field strengths. It is shown that in order to obtain a correct assessment of the efficiency of separation by a ferrite drum magnetic separator, a Davis tube should be operated at the field of about 0.1 T, which is lower than the current practice suggests. For a rare-earth drum separator the Davis tube operating field should be at least 0.3 T.


1976 ◽  
Vol 32 ◽  
pp. 613-622
Author(s):  
I.A. Aslanov ◽  
Yu.S. Rustamov

SummaryMeasurements of the radial velocities and magnetic field strength of β CrB were carried out. It is shown that there is a variability with the rotation period different for various elements. The curve of the magnetic field variation measured from lines of 5 different elements: FeI, CrI, CrII, TiII, ScII and CaI has a complex shape specific for each element. This may be due to the presence of magnetic spots on the stellar surface. A comparison with the radial velocity curves suggests the presence of a least 4 spots of Ti and Cr coinciding with magnetic spots. A change of the magnetic field with optical depth is shown. The curve of the Heffvariation with the rotation period is given. A possibility of secular variations of the magnetic field is shown.


Author(s):  
E. Sukedai ◽  
H. Mabuchi ◽  
H. Hashimoto ◽  
Y. Nakayama

In order to improve the mechanical properties of an intermetal1ic compound TiAl, a composite material of TiAl involving a second phase Ti2AIN was prepared by a new combustion reaction method. It is found that Ti2AIN (hexagonal structure) is a rod shape as shown in Fig.1 and its side surface is almost parallel to the basal plane, and this composite material has distinguished strength at elevated temperature and considerable toughness at room temperature comparing with TiAl single phase material. Since the property of the interface of composite materials has strong influences to their mechanical properties, the structure of the interface of intermetallic compound and nitride on the areas corresponding to 2, 3 and 4 as shown in Fig.1 was investigated using high resolution electron microscopy and image processing.


Sign in / Sign up

Export Citation Format

Share Document