Establishment of the High Temperature Constitutive Relationship of the Haynes 230 Ni-Based Superalloy

2018 ◽  
Vol 385 ◽  
pp. 397-402
Author(s):  
Xiu Quan Cheng ◽  
Ning Yuan Zhu ◽  
Qin Xiang Xia ◽  
Gang Feng Xiao

The high temperature flow behavior of materials is an important basis to study their formability and to determine reasonable forming process parameters. In this work, the high temperature plane strain compression (HTPSC) tests were employed to reveal the high temperature flow behavior of Haynes 230 Ni-based superalloy under the wide range of temperatures (950°C-1200°C) and strain rates (0.01/s-10/s). The stress-strain data from the tests were applied to model the strain-compensated Arrhenius physically-based constitutive equation and considering the dynamic recovery (DRV) and dynamic recrystallization (DRX) phenomenological constitutive equation. The comparison indicated that the predictions of the two modeled constitutive equations are in good agreement with the experimental data. The prediction of the flow behavior of Haynes 230 Ni-based superalloy of strain-compensated Arrhenius constitutive equation is more accurately (average absolute relative error (AARE) is 2.84%) than that of considering DRV and DRX constitutive equation (AARE is 7.57%).

2019 ◽  
Vol 38 (2019) ◽  
pp. 168-177 ◽  
Author(s):  
Liu Shi-feng ◽  
Shi Jia-min ◽  
Yang Xiao-kang ◽  
Cai Jun ◽  
Wang Qing-juan

AbstractIn this study, the high-temperature deformation behaviour of a TC17 titanium alloy was investigated by isothermal hot compression tests in a wide range of temperatures (973–1223 K) and strain rates (0.001–10 s−1). Then, the constitutive equations of different phase regimes (α + β and single β phases) were developed on the basis of experimental stress-strain data. The influence of the strain has been incorporated in the constitutive equation by considering its effect on different material constants for the TC17 titanium alloy. Furthermore, the predictability of the developed constitutive equation was verified by the correlation coefficient and average absolute relative error. The results indicated that the obtained constitutive equations could predict the high-temperature flow stress of a TC17 titanium alloy with good correlation and generalization.


2012 ◽  
Vol 233 ◽  
pp. 339-342 ◽  
Author(s):  
Ming Ping Zou ◽  
Wu Jiao Xu ◽  
Peng Cheng Wang

To investigate the hot deformation behaviors of AISI 4120 steel, isothermal compression tests were conducted using Gleeble-1500 thermal-mechanical simulator in the temperature range of 1073-1373K with the strain rate of 0.01-10s-1. The hyperbolic sine law in Arrhenius type is used in the constitutive modeling for AISI 4120. The influence of strain is incorporated in constitutive analysis by considering the effect of strain on material constants α, n, Q and ln A. The flow stress values predicted by the developed constitutive equations show a good agreement with experimental results, which reveals that the developed constitutive equations could give an accurate and precise prediction for the high temperature flow behaviors of AISI 4120 steel. The predictability of developed constitutive equation was further quantified in terms of correlation coefficient (R) and average absolute relative error (AARE). The R and AARE were found to be 0.9847 and 8.0372% respectively, which reflects the good prediction capabilities of the developed constitutive equation.


2018 ◽  
Vol 37 (1) ◽  
pp. 75-87
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Jiamin Shi ◽  
Wen Wang ◽  
Yingying Liu

AbstractConstitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress–strain data from isothermal hot compression tests, in a wide range of temperature of 1,023~1,273 K, and strain rate range of 0.001~10 s–1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.


2019 ◽  
Vol 38 (2019) ◽  
pp. 699-714 ◽  
Author(s):  
Bing Zhang ◽  
Xiaodi Shang ◽  
Su Yao ◽  
Qiuyu Wang ◽  
Zhijuan Zhang ◽  
...  

AbstractThe true strain data and true stress data are obtained from the isothermal compression tests under a wide range of strain rates (0.1–20 s−1) and temperatures (933–1,133 K) over the Gleeble-3500 thermomechanical simulator. The data are employed to generate the constitutive equations according to four constitutive models, respectively, the strain-compensated Arrhenius-type model, the modified Zerilli–Armstrong (ZA) model, the modified Johnson–Cook (JC) model and the JC model. In the meanwhile, a comparative research was made over the capacities of these four models and hence to represent the elevated temperature flow behavior of TA2. Besides, a comparison of the accuracy of the predictions of average absolute relative error, correlation coefficient (R) and the deformation behavior was made to test the sustainability level of these four models. It is shown from these results that the JC model is not suitable for the description of flow behavior of TA2 alloy in α+β phase domain, while the predicted values of modified JC model, modified ZA model and the strain-compensated Arrhenius-type model could be consistent well with the experimental values except under some deformation conditions. Moreover, the strain-compensated Arrhenius-type model can be also used to track the deformation behavior more precisely in comparison with other models.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1985 ◽  
Author(s):  
Jiang Li ◽  
Fuguo Li ◽  
Jun Cai

To investigate the flow stress, microstructure, and usability of TA15 titanium alloy, isothermal compression was tested at 1073–1223 K and strain rates of 10, 1, 0.1, 0.01, and 0.001 s−1, and strain of 0.9. The impact of strain and temperature on thermal deformation was investigated through the exponent-type Zener–Hollomon equation. Based on the influence of various material constants (including α, n, Q, and lnA) on the TA15 titanium alloy, the strain effect was included in the constitutive equation considering strain compensation, which is presented in this paper. The validity of the proposed constitutive equation was verified through the correlation coefficient (R) and the average absolute relative error (AARE), the values of which were 0.9929% and 6.85%, respectively. Research results demonstrated that the strain-based constitutive equation realizes consistency between the calculated flow stress and the measured stress of TA15 titanium alloy at high temperatures.


2013 ◽  
Vol 811 ◽  
pp. 152-156
Author(s):  
Li Bin Jia ◽  
Lin Li ◽  
Yi Ru

In order to study the hot workability of TC21 titanium alloy, isothermal hot compression tests were conducted in the temperatures range of 1123~1203K and strain rates range of 0.01~10s-1. The influence of strain was incorporated in hyperbolic sine constitutive equation by considering the effect of strain on material constants. Correlation coefficient (R) and average absolute relative error (AARE) were introduced to verify the validity of the developed hyperbolic sine constitutive equation. The values of R and AARE were determined to be 0.9891 and 7.753% respectively, which indicated that the developed hyperbolic sine constitutive equation considering strain compensation could precisely predict the flow behavior of TC21 titanium alloy throughout the entire range of temperatures and strain rates.


2013 ◽  
Vol 752 ◽  
pp. 69-74 ◽  
Author(s):  
Tareg S. Ben Naser ◽  
György Krállics

The constitutive equation in hot working for Al 7075 aluminum alloy was obtained employing experimental data of stress-strain curve, in a wide range of temperature (250-450°C) and strain rate (0.002-2 s-1). The influence of temperature and strain rate on the deformation behavior is represented by the equation proposed by Sellar and McTegart, all material parameters are considered as function of equivalent strain. The force-height data was corrected with interpolation method in the way to eliminate the error at the measurement. To verify the constitutive equation two parameter were calculated average absolute relative error (AARE=6.42) and correlation coefficient (R=0.998), for the same purpose the measuring and calculated flow curve are plotted together, the results shows that the constitutive equation obtained is good describing the behavior of the material.


2013 ◽  
Vol 816-817 ◽  
pp. 84-89
Author(s):  
Yong Gang Kang ◽  
Yuan Yang ◽  
Jie Huang ◽  
Jing Hang Zhu

7075-T651 aluminum alloy are widely used in aeronautical applications such as wing panels, but there is no corresponding constitutive model for it now. In this paper, the flow behavior of 7050-T651 aluminum alloy was investigated by Split Hopkinson Pressure Bar (SHPB) and quasi-static compression experiment system. The strain hardening parameters were obtained by quasi-static compression experiment data, and the strain rate hardening parameters at various strain rates (1000-3000s-1) and room temperature, and the thermal softening parameter at various temperatures (20-300°C) where strain rate is 3000s-1 were obtained by SHPB experiment data. Then the constitutive equation of 7075-T651 aluminum alloy is obtained based on Johnson-Cook constitutive equation model.


2016 ◽  
Vol 35 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Yingying Han

AbstractTrue stress and true strain values obtained from isothermal compression tests over a wide temperature range from 1,073 to 1,323 K and a strain rate range from 0.001 to 1 s–1 were employed to establish the constitutive equations based on Johnson Cook, modified Zerilli–Armstrong (ZA) and strain-compensated Arrhenius-type models, respectively, to predict the high-temperature flow behavior of Ti–6Al–4V alloy in α + β phase. Furthermore, a comparative study has been made on the capability of the three models to represent the elevated temperature flow behavior of Ti–6Al–4V alloy. Suitability of the three models was evaluated by comparing both the correlation coefficient R and the average absolute relative error (AARE). The results showed that the Johnson Cook model is inadequate to provide good description of flow behavior of Ti–6Al–4V alloy in α + β phase domain, while the predicted values of modified ZA model and the strain-compensated Arrhenius-type model could agree well with the experimental values except under some deformation conditions. Meanwhile, the modified ZA model could track the deformation behavior more accurately than other model throughout the entire temperature and strain rate range.


Author(s):  
Utkudeniz Ozturk ◽  
Jose Maria Cabrera ◽  
Jessica Calvo

Since its introduction in 2003, alloy 718PlusTM spurred a lot of interest owing to its increased maximum service temperature over conventional Inconel 718 (704 °C versus 650 °C), good formability, and weldability together with its moderate cost. Understanding the high-temperature deformation characteristics and microstructural evolution is still of interest to many. It is known that the service performance and hot-flow behavior of this alloy are a strong function of the microstructure, particularly the grain size. To develop precise microstructure evolution models and foresee the final microstructure, it is important to understand how and under which forming conditions softening and precipitation processes occur concurrently. In this work, the softening behavior, its mechanisms, and the precipitation characteristics of 718PlusTM were investigated in two parallel studies. While cylindrical compression tests were employed to observe the hot-flow behavior, the precipitation behavior and other microstructural phenomena such as particle coarsening were tracked via hardness measurements. A precipitation–temperature–time (PTT) diagram was reported, and modeling of the flow curves via hyperbolic sine model was discussed in the light of the PTT behavior. Both “apparent” approach and “physically based” approach are implemented and two different sets of parameters were reported for the latter. Finally, recovery and recrystallization kinetics are described via Estrin–Mecking and Bergstrom, and Avrami kinetics, respectively.


Sign in / Sign up

Export Citation Format

Share Document