Cross-Diffusion Effects on MHD Cattaneo-Christov Flow of Casson Fluid Past a Convective Linear/Non-Linear Stretching Sheet

2018 ◽  
Vol 388 ◽  
pp. 96-113 ◽  
Author(s):  
Bujula Ramadevi ◽  
Janke Venkata Ramana Reddy ◽  
Vangala Sugunamma

Through this article, we presented a comparative study for the MHD non- Newtonian fluid flow past a stretching sheet using Cattaneo-Christov heat flux model. The flow equations and the related convective boundary conditions have been altered as dimensionless ODEs by suitable similarity transformations. Further, these are resolved by employing fourth order Runge-Kutta method along with shooting technique. The influence of all flow regulating parameters on velocity, thermal and mass diffusive boundary layers are perceived through graphs. Also the variation in skin friction, mass and heat transfer coefficients for the same parameters are perceived via numerical values. The velocity of the flow past a linear stretching sheet is higher than that of the flow past a non-linear stretching sheet. But heat transfer performance in the flow via non-linear surface is better than that of flow via linear surface.

2020 ◽  
Vol 9 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Nainaru Tarakaramu ◽  
P.V. Satya Narayana ◽  
Bhumarapu Venkateswarlu

AbstractThe present investigation deals with the steady three-dimensional flow and heat transfer of nanofluids due to stretching sheet in the presence of magnetic field and heat source. Three types of water based nanoparticles namely, copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are considered in this study. The temperature dependent variable thermal conductivity and thermal radiation has been introduced in the energy equation. Using suitable similarity transformations the dimensional non-linear expressions are converted into dimensionless system and are then solved numerically by Runge-Kutta-Fehlberg scheme along with well-known shooting technique. The impact of various flow parameters on axial and transverse velocities, temperature, surface frictional coefficients and rate of heat transfer coefficients are visualized both in qualitative and quantitative manners in the vicinity of stretching sheet. The results reviled that the temperature and velocity of the fluid rise with increasing values of variable thermal conductivity parameter. Also, the temperature and normal velocity of the fluid in case of Cu-water nanoparticles is more than that of Al2O3- water nanofluid. On the other hand, the axial velocity of the fluid in case of Al2O3- water nanofluid is more than that of TiO2nanoparticles. In addition, the current outcomes are matched with the previously published consequences and initiate to be a good contract as a limiting sense.


2019 ◽  
Vol 44 (2) ◽  
pp. 101-122 ◽  
Author(s):  
Anantha Kumar K. ◽  
Sugunamma V. ◽  
Sandeep N.

AbstractThe knowledge of thermal transport of magnetohydrodynamic (MHD) flows across a stretching sheet plays a crucial role for transportation, fiber coating, heat exchangers, etc. Due to this fact, we scrutinize the heat transfer features of MHD micropolar fluid flow via a stretching surface in the neighborhood of the stagnation point with Joule heating, by taking advantage of the classical Fourier law. The flow equations are transformed into dimensionless form with the help of suitable similarity transformations. The Runge–Kutta-based shooting method is utilized to solve the converted non-linear coupled equations. Impacts of various physical parameters on the flow fields are represented via graphs. The heat transfer rate, couple stress coefficient and friction factor are presented in a separate table. Results anticipate that fluid temperature is an increasing function of Eckert number, radiation and magnetic parameters, whereas an opposite outcome is noticed for the Prandtl number. It is interesting to notice that the maximum velocity is attained in the absence of slip but maximum temperature is detected in the presence of slip.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 495-506 ◽  
Author(s):  
Oluwole Makinde ◽  
Fazle Mabood ◽  
Mohammed Ibrahim

In this paper, steady 2-D MHD free convective boundary-layer flows of an electrically conducting nanofluid over a non-linear stretching sheet taking into account the chemical reaction and heat source/sink are investigated. The governing equations are transformed into a system of non-linear ODE using suitable similarity transformations. Analytical solution for the dimensionless velocity, temperature, concentration, skin friction coefficient, heat and mass transfer rates are obtained by using homotopy analysis method. The obtained results show that the flow field is substantially influenced by the presence of chemical reaction, radiation, and magnetic field.


2017 ◽  
Vol 377 ◽  
pp. 233-241 ◽  
Author(s):  
S.U. Mamatha ◽  
Mahesha ◽  
Chakravarthula S.K. Raju ◽  
Oluwole Daniel Makinde

The underlying intention of the present study is to analyze the steady incompressible magneto hydrodynamic Carreau Dusty fluid over a stretching sheet with exponentially decaying heat source. Convective conditions are considered to control the thermal boundary layer. Similarity transformations were used to convert partial differential equations (PDEs) to a system of nonlinear ordinary differential equations (NODEs) which are solved numerically by employing Runge-Kutta with Newton’s technique. The effect of pertinent parameters on velocity and temperature profiles of both fluid and dust phase within the boundary layer has been studied by considering various values of controlling parameters. In addition, skin friction coefficient and reduced heat transfer coefficient have been examined for various values of the governing parameters. It is observed that the rate of heat transfer depreciates with space dependent heat generation and enhanced with the existing convective condition.


2015 ◽  
Vol 362 ◽  
pp. 76-83
Author(s):  
N.A. Rawi ◽  
A.R.M. Kasim ◽  
M. Isa ◽  
S. Shafie

This paper studies the effect of periodical gravity modulation, or g-jitter induced magnetohydrodynamics (MHD) mixed convection flow past an inclined stretching sheet. Using appropriate non-dimensional variables, the governing partial differential equations are first transformed into non-dimensional form. The obtained non-dimensional equations are then solved numerically using Keller-box method. The features of the flow with heat transfer characteristics for different values of frequency, amplitude and magnetic parameters on the velocity and temperature profiles are analyzed and discussed. The behaviour of physical quantities such as skin friction and heat transfer coefficients are also investigated. To validate the present numerical results, comparison with published results is done and found to be in a good agreement.


2018 ◽  
Vol 49 (12) ◽  
pp. 1185-1198 ◽  
Author(s):  
Abid Hussanan ◽  
Mohd Zuki Salleh ◽  
Hamzeh Taha Alkasasbeh ◽  
Ilyas Khan

Sign in / Sign up

Export Citation Format

Share Document