Truck Synchronizer Rings Recovery by Plastic Deformation Technology

2021 ◽  
Vol 410 ◽  
pp. 42-47
Author(s):  
Dmitriy L. Pankratov ◽  
Alexander V. Shaparev

A truck's gearbox friction rings restoring process by hot 3D stamping was developed and adopted for implementation. Using this recovery method in combination with subsequent synchronizer rings mechanical processing allows restoring up to 95% resource of worn parts. It was established that section of a stamp's deforming element for axisymmetrical parts restoring should be a one-way wedge with a sloping face facing the reconstructed surface. The most significant factors influencing the transmission gearbox synchronizer rings restoring process are: stamp deforming element thickness, plunging depth and distance to a recoverable surface. The energy and force parameters study of hot plastic deformation process serves as input data for automatic design systems of working elements of stamps for restoring synchronizer rings as well as for determination of a required deforming force during hot stamping.

2020 ◽  
Vol 59 (28) ◽  
pp. 8793
Author(s):  
Nozomi Nakaniwa ◽  
Yuichiro Ezoe ◽  
Masaki Numazawa ◽  
Mai Takeo ◽  
Manabu Ishida ◽  
...  

2012 ◽  
Vol 190 ◽  
pp. 196-199 ◽  
Author(s):  
Wojciech Lipiec

The influence of powder particle size on behaviour of hot plastic deformation, structure and magnetic properties of Nd–Fe–B die-upset magnets have been examined. It was found, that powder particle size strongly affected plastic properties of material during hot deformation process. Precursors made of powder with the smallest particles (d < 32 μm) shown bigger plastic resistance than those made of powder with the larger ones (32 – 88 or 88 – 350 μm). For the same pressing force and temperature, applied within hot plastic deformation process, precursors made of the smallest particle powder allowed to obtain only 56 % deformation, while the another, made of larger particle powder: 65% deformation.


2010 ◽  
Vol 165 ◽  
pp. 226-230
Author(s):  
Sylwia Wiewiórowska ◽  
Zbigniew Muskalski ◽  
Maciej Suliga

The development of new technologies of metal joining processes including brazing methods requires improvement of solder properties. Copper-based brazing solders with phosphorus and tin additions belong to the group of silver-free brazing alloys with low ductility. The most common form of these solders are bars and wires so there is a need to determine the causes of technological problems concerned with plastic deformation of the solders. In the literature, except for the chemical composition and temperature of brazing, we can not find the details regarding the change of solder structure during heating processes. The preliminary tests carried out in the industry indicate high plasticity of solder in the narrow range of temperature. This encouraged the authors of the paper to perform dilatometric testing with the aim of establishing the precise temperatures of solder phase changes. The metallographic research with the use of scanning electron microscopy enabled the determination of phase composition of “freezing” structures and the evaluation of their flexibility to the plastic deformation.


2015 ◽  
Vol 813-814 ◽  
pp. 161-165
Author(s):  
M. Sadhasivam ◽  
T. Pravin ◽  
S. Raghuraman

The need for super-plasticity and high strength leads to the development of Severe Plastic Deformation technique. The strength of the material is directly dependent upon the grain size of the material. So, there is a need for producing Ultra-Fine Grain microstructure (UFG). UFG material is the material with very small grain size in the range of sub-micrometre. Application of severe plastic deformation, imparts extremely high strain. Equal channel angular pressing (ECAP) is a severe plastic deformation process in which the metal specimen is pressed through an angular channel of equal cross section. The material is subjected to shear deformation and strain is imparted in the specimen. Geometric parameters such as channel angle and corner angle play a major role in grain refinement. Aluminium (Al) specimens are subjected to undergo severe plastic deformation. Since, the strength of Al is not high, other materials are added in order to enhance its mechanical properties by matrix work hardening. Copper (Cu) along with Al shows increase in its strength and also in hardness. An attempt is made with Aluminium and copper, blended in the ratio 95:5 by weight with the main objective to study the Tensile strength, Hardness and Percentage Elongation properties of the specimen.


2020 ◽  
Vol 0 (4) ◽  
pp. 43-51
Author(s):  
A. L. Vorontsov ◽  
◽  
I. A. Nikiforov ◽  

Formulae have been obtained that are necessary to calculate cumulative deformation in the process of straitened extrusion in the central area closed to the working end of the counterpunch. The general method of plastic flow proposed by A. L. Vorontsov was used. The obtained formulae allow one to determine the deformed state of a billet in any point of the given area. The formulae should be used to take into account the strengthening of the extruded material.


2016 ◽  
Vol 716 ◽  
pp. 114-120 ◽  
Author(s):  
Sebastian Mróz ◽  
Piotr Szota ◽  
Teresa Bajor ◽  
Andrzej Stefanik

The paper presents the results of physical modelling of the plastic deformation of the Mg/Al bimetallic specimens using the Gleeble 3800 simulator. The plastic deformation of Mg/Al bimetal specimens characterized by the diameter to thickness ratio equal to 1 was tested in compression tests. The aim of this work was determination of the range of parameters as temperature and strain rate that mainly influence on the plastic deformation of Mg/Al bars during metal forming processes. The tests were carried out for temperature range from 300 to 400°C for different strain rate values. The stock was round 22.5 mm-diameter with an Al layer share of 28% Mg/Al bars that had been produced using the explosive welding method. Based on the analysis of the obtained testing results it has been found that one of the main process parameters influencing the plastic deformation the bimetal components is the initial stock temperature and strain rate values.


Sign in / Sign up

Export Citation Format

Share Document