Collagen-Chitosan- Glycerol-HPMC Composite as Cornea Artificial Candidate

Author(s):  
Prihartini Widiyanti ◽  
Reni Prastyani

The number of blindness is tend to be increased year by year. One of the blindness cause is cornea ulcer.The cause of cornea ulcer is bacteria, fungi, and herpes simplex virus. Cornea transplantation is the only treatment which could widely accepted for blindness. Transplant by donor network becomes the only treatment that is acceptable on a large for blindness. However, treatment donor transplants have many shortcomings in complications post surgery such as host response, donor limitations, incompatibility and the length of time healing. As technology develops, there are many corneal substitutes based on natural ingredients derived from collagen or their derivatives because they promise better properties in biocompatibility. The aim of research are to conduct the synthesis and characterization of collagen- chitosan- glycerol - HPMC as artificial cornea such functional cluster test, cytotoxycity test, morphological test and antibacterial test. Based on functional cluster test, there are functional groups of all components of composite materials. While from cytotoxicity test, all samples have a percentage of living cells above 85%. The morphology test is showed that the pore size of sample B with composition collagen-chitosan-glycerol-HPMC is in accordance with the standard pore size for keratoprothesis. Sample A (collagen-chitosan-glycerol) and sample B (collagen-chitosan-glycerol-HPMC) have strong antibacterial properties.Biocomposite of collagen-chitosan-glycerol could be considered as artificial cornea due to the proximity with the corneal characteristics.

2020 ◽  
Author(s):  
Scott C. Hauswirth ◽  
◽  
Majdi Abou Najm ◽  
Christelle Basset

Endocrines ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 54-64
Author(s):  
Manuela Cipolletti ◽  
Sara Pescatori ◽  
Filippo Acconcia

Metastatic estrogen receptor α (ERα)-expressing breast cancer (BC) occurs after prolonged patient treatment with endocrine therapy (ET) (e.g., aromatase inhibitors—AI; 4OH-tamoxifen—4OH-Tam). Often these metastatic BCs express a mutated ERα variant (e.g., Y537S), which is transcriptionally hyperactive, sustains uncontrolled proliferation, and renders tumor cells insensitive to ET drugs. Therefore, new molecules blocking hyperactive Y537S ERα mutation transcriptional activity are requested. Here we generated an MCF-7 cell line expressing the Y537S ERα mutation stably expressing an estrogen-responsive element (ERE) promoter, which activity can be monitored in living cells. Characterization of this cell line shows both hyperactive basal transcriptional activity with respect to normal MCF-7 cells, which stably express the same ERE-based promoter and a decreased effect of selective ER downregulators (SERDs) in reducing Y537S ERα mutant transcriptional activity with respect to wild type ERα transcriptional activity. Kinetic profiles of Y537S ERα mutant-based transcription produced by both drugs inducing receptor degradation and siRNA-mediated depletion of specific proteins (e.g., FOXA1 and caveolin1) reveals biphasic dynamics of the inhibition of the receptor-regulated transcriptional effects. Overall, we report a new model where to study the behavior of the Y537S ERα mutant that can be used for the identification of new targets and pathways regulating the Y537S ERα transcriptional activity.


1973 ◽  
Vol 248 (18) ◽  
pp. 6270-6277
Author(s):  
Arthur Weissbach ◽  
Su-Chen L. Hong ◽  
Jayme Aucker ◽  
Robert Muller

Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 771
Author(s):  
Autumn T. LaPointe ◽  
Kevin J. Sokoloski

Alphaviruses are positive-sense RNA arboviruses that are capable of causing severe disease in otherwise healthy individuals. There are many aspects of viral infection that determine pathogenesis and major efforts regarding the identification and characterization of virulence determinants have largely focused on the roles of the nonstructural and structural proteins. Nonetheless, the viral RNAs of the alphaviruses themselves play important roles in regard to virulence and pathogenesis. In particular, many sequences and secondary structures within the viral RNAs play an important part in the development of disease and may be considered important determinants of virulence. In this review article, we summarize the known RNA-based virulence traits and host:RNA interactions that influence alphaviral pathogenesis for each of the viral RNA species produced during infection. Overall, the viral RNAs produced during infection are important contributors to alphaviral pathogenesis and more research is needed to fully understand how each RNA species impacts the host response to infection as well as the development of disease.


Sign in / Sign up

Export Citation Format

Share Document