Optimization of Multi-Responses in Hot Turning of Inconel 625 Alloy Using DEA-Taguchi Approach

Author(s):  
A.K. Parida ◽  
K.P. Maity

In the present work DEA (data envelopment analysis) coupled with Taguchi method has used for optimization in process parameters of hot turning operation. An experimental investigation has been carried out to study the effect of cutting parameters such as speed, feed and depth of cut during. The material removal rate and surface finish, are to be studied with respect to machining at 450 temperature by heating Inconel 625. In order to achieve both quality and productivity, optimization of both is necessary simultaneously. DEA –Taguchi method can employed for solving in multi-response problem. LINGO software was used to find out the relative efficiency and converted to S/N ratio using MINITAB software. The optimization of the machining parameter found at 100 m/min cutting speed, 0.15 mm/rev feed rate and 1 mm depth of cut. Depth of cut is the most influencing parameter which affect both surface finish and material removal rate in the machining process.

This study uses Taguchi methodology and Gray Relational Analysis approach to explore the optimization of face milling process parameters for Al 6061 T6 alloy.Surface Roughness (Ra), Material Removal Rate (MRR) has been identified as the objective of performance and productivity.The tests were performed by selecting cutting speed (mm / min), feed rate (mm / rev) and cutting depth (mm) at three settings on the basis of Taguchi's L9 orthogonal series.The grey relational approach was being used to establish a multiobjective relationship between both the parameters of machining and the characteristics of results. To find the optimum values of parameters in the milling operation, the response list and plots are used and found to be Vc2-f1-d3. To order to justify the optimum results, the confirmation tests are performed.The machining process parameters for milling were thus optimized in this research to achieve the combined goals such as low surface roughness and high material removal rate on Aluminum 6061 t6.It was concluded that depth of cut is the most influencing parameter followed by feed rate and cutting velocity.


2019 ◽  
Vol 8 (2) ◽  
pp. 3219-3222

Electrochemical grinding is combination of electrochemical machining and mechanical grinding process.in this process 90%-98% percentage of material are removed by electrochemical machining, only 3%-5% of materials can only remove by mechanical grinding process. Faradays law of electrolysis (or) reverse electroplating act as a basic principle for this ECG process. This ECG has various advantages than other machining process for high strength materials .low induvial stress, large depth of cut .here Monel 400 alloy take base material ,its Ni-Cu alloy so it’s have very high level corrosion resistance, so it’s used in marine engineering ,heat exchanger. Here silicon carbide abrasive insulated brass grinding wheel used instead of copper bonded diamond wheel. Voltage, electrolyte concentration, electrolyte flowrate take are the parameters of this process. Three factors and two levels of RSM methodology takes for optimization. The Analysis of variance (ANOVA) has been delivers the variation between the parameters performed to develop mathematical model. The parameters high voltage and concentration of electrolyte to produce maximum material removal rate.


2018 ◽  
Vol 28 ◽  
pp. 55-66 ◽  
Author(s):  
Kuldeep Singh ◽  
Khushdeep Goyal ◽  
Deepak Kumar Goyal

In research work variation of cutting performance with pulse on time, pulse off time, wire type, and peak current were experimentally investigated in wire electric discharge machining (WEDM) process. Soft brass wire and zinc coated diffused wire with 0.25 mm diameter and Die tool steel H-13 with 155 mm× 70 mm×14 mm dimensions were used as tool and work materials in the experiments. Surface roughness and material removal rate (MRR) were considered as performance output in this study. Taguchi method was used for designing the experiments and optimal combination of WEDM parameters for proper machining of Die tool steel (H-13) to achieve better surface finish and material removal rate. In addition the most significant cutting parameter is determined by using analysis of variance (ANOVA). Keywords Machining, Process Parameters, Material removal rate, Surface roughness, Taguchi method


Author(s):  
M Jahanbakhsh ◽  
A Akhavan Farid ◽  
Mohammad Lotfi

Rapid tool wear is one of the major machinability aspects of nickel-based super alloys. In this article, the effect of cutting parameters on material removal rate and tool wear of a whisker ceramic insert in turning of Inconel 625 was examined. Optical microscope and scanning electron microscope were applied to measure and study tool wear mechanism. Response surface method was used to develop a mathematical model which confirmed by experimental tests. The statistical analysis done by analysis of variance showed that depth of cut is the most effective factor on the tool wear. Experiments showed that increment of feed rate had an insignificant effect on the progress of flank wear, and it is an important controlling factor when material removal rate is considered as a desired output. Finally, optimized cutting condition is presented in this work.


2021 ◽  
Author(s):  
S. S Kulkarni ◽  
Sarika Sharma

This paper represents the optimization method utilized in machining process for figuring out the most advantageous manner design. Typically, the technique layout parameters in machining procedures are noticeably few turning parameters inclusive of reducing velocity, feed and depth. The optimization of speed, feed depth of cut is very tough because of several other elements associated with processing situations and form complexities like surface Roughness, material removal rate (MRR) that are based Parameters. On this task a new fabric glass fibre composite is introduced through which could lessen costing of manufacturing and time and additionally it will boom the technique of productiveness. Composite substances have strength, stiffness, light weight, which gives the large scope to engineering and technology. The proposed research work targets to analyze turning parameters of composite material. The machining parameters are very important in manufacturing industries. The present research work is optimized surface roughness of composite material specifically in turning procedure with the aid of changing parameter including intensity of reduce, slicing velocity and feed price and additionally expect the mechanical houses of composite material. The RSM optimization is important because it evaluates the effects of multiple factors and their interactions on one or more responsive variables. It is observed that the material removal rate increases and surface roughness decreases as per the increase of Spindle speed and feed rate.


Author(s):  
Arpit Srivastava

Abstract: The proper selection of machining conditions and machining parameter is an important aspect, before going to machine a brittle material by rotary ultrasonic drilling process Because these conditions will determine such important characteristics as; Material removal rate (MRR) and Surface roughness (SR). The purpose of this work is to determine the optimal values of machining parameters of rotary ultrasonic drilling process. The work has been based on the effect of three design factors: Tool feed rate, vibration frequency and grain size of abrasive particle on such characteristic like material removal rate (MRR). This work has been done by means of the technique of design of experiment (DOE), which provides us to perform the above-mentioned analysis with small number of experiments. In this work, a L9 orthogonal array is used to design the experiment. The adequate selection of machining parameters is very important in manufacturing system, because these parameters determine the surface quality and dimensional accuracy of the manufactured part. The optimal setting of the parameters are determined through experiments planned, conducted and analyzed using the Taguchi method. Keywords: RUSM, Material removal rate, Drilling, Taguchi method


Author(s):  
César Oswaldo Aguilera-Ojeda ◽  
Alberto Saldaña-Robles ◽  
Agustín Vidal-Lesso ◽  
Israel Martínez-Ramírez ◽  
Eduardo Aguilera-Gómez

Abstract The surface finish of industrial components has an important role in their performance and lifetime. Therefore, it is crucial to find the cutting parameters that provide the best surface finish. In this work, an experimental study of the effect of cutting parameters on ultra-high molecular weight polyethylene (UHMWPE) by a turning process was carried out. Today, the UHMWPE polymer continues to find applications mainly in the automotive industry and biomechanics because it is resistant to impact and corrosive materials to use. A face-centered Central Composite Design (CCD) and Response Surface Methodology (RSM) were applied to evaluate the influence of the cutting speed (Vc), feed rate (f) and depth of cut (ap) of the turning operation on the Average Surface Roughness (Ra) and Material Removal Rate (MRR). Results allowed obtaining an adjusted multivariable regression model that describes the behavior of the Ra that depends on the cutting parameters in the turning process. The predictive model of Ra showed that it fits well with a correlation coefficient (R2) around 0.9683 to the experimental data for Ra. The ANOVA results for Ra showed that the feed is the most significant factor with a contribution of 42.3 % for the term f 2, while the speed and depth of cut do not affect Ra with contributions of 0.19% and 0.18%, respectively. A reduction of feed from 0.30 to 0.18 mm·rev−1 produces a decrease in surface roughness from 6.68 to 3.81 μm. However, if the feed continued to reduce an increase in surface roughness, a feed of 0.05 mm·rev−1 induces a surface roughness of 14.93 μm. Feeds less than 0.18 mm·rev−1 cause a heat generation during turning that increases the temperature in the process zone, producing surface roughness damage of the UHMWPE polymer. Also, the results for MRR demonstrated that all of the cutting parameters are significant with contributions of 31.4%, 27.4% and 15.4% to feed, speed, and depth of cut, respectively. The desirability function allowed optimizing the cutting parameters (Vc = 250 m·min−1, ap = 1.5 mm y f = 0.27 mm·rev−1) to obtain a minimum surface roughness (Ra = 4.3 μm) with a maximum material removal rate (MMR = 97.1 cm3·min−1). Finally, the predictive model of Ra can be used in the industry to obtain predictions on the experimental range analyzed, reducing the surface roughness and the manufacturing time of UHMWPE cylindrical components.


2014 ◽  
Vol 887-888 ◽  
pp. 1195-1199
Author(s):  
Zhi Chen ◽  
Zhen Zhang ◽  
Wu Yi Ming ◽  
Hao Huang

Wire electrical discharge machining (WEDM) is extensively used in the mold, instrument and manufacturing industries, and rough cutting operation in WEDM is treated as a challenging process because improvement of more than one machining performance measures viz. metal removal rate (MRR), roughness (Ra) are sought to obtain a precision work. In this paper, first of all, a set of Taguchi experiment (L18 21×34) is carried out based on the Taguchi method. Secondly, two groups of ANOM are completed to obtain the influence trends of each parameters on material removal rate (MRR) and roughness (Ra), respectively. Eventually, three groups of best process parameters combination are acquired to meet high material removal rate (MRR) and low roughness (Ra) simultaneously, it can provide guiding significance to actual machining process.


2013 ◽  
Vol 393 ◽  
pp. 246-252 ◽  
Author(s):  
A. Sabur ◽  
Mohammad Yeakub Ali ◽  
M.A. Maleque

Electro discharge machining (EDM) technique, a noncontact machining process, is applied for structuring nonconductive ZrO2 ceramic. A conductive layer of adhesive copper is applied on the workpiece surface to initiate the sparks. Kerosene is used as dielectric for creation of continuous conductive pyrolytic carbon layer on the machined surface. Experiments are conducted by varying the peak current (Ip), pulse-on time (Ton), pulse-off time (Toff) and gap voltage (Vg). Correlating these variables a mathematical model for material removal rate (MRR) is developed using Taguchi method. The optimized parametric conditions are determined for higher MRR through ANOVA and signal to noise (S/N) ratio analysis. The results showed that the Ip and Ton are the significant parameters of MRR in EDM for nonconductive ZrO2 ceramic. The model also showed that MRR increases with the increase of Ip and Ton, but the process is controlled by Ip as a whole.


Sign in / Sign up

Export Citation Format

Share Document